Reliability and Life Data Analysis Using Statgraphics Centurion Part 2

Neil W. Polhemus, CTO, StatPoint Technologies, Inc.

Copyright 2012 by StatPoint Technologies, Inc.

Web site: www.statgraphics.com

Life Data

The type of data considered in this webinar consists of lifetimes or times to failure.

Typical applications include:

- 1. Estimating product reliability
- 2. Estimating survival times after medical treatments

Statgraphics Life Data Procedures

Statgraphics includes the following procedures for analyzing life data:

Procedures with no explanatory factors

- Life tables (intervals or times)
- Distribution fitting for censored data
- Weibull analysis
- Repairable systems (intervals or times)

Procedures with explanatory factors

- Arrhenius plot
- Cox proportional hazards
- Life data regression

Outline - Part 2

Example #4: accelerated life test for device reliability employing an Arrhenius model

Example #5: Cox proportional hazards model for cancer patient survival times

Example #6: general life data regression for capacitor reliability

Example #4 - Accelerated life test

Source: <u>Statistical Methods for Reliability Data</u> (Meeker and Escobar)

	temperature	hours	devices	censored
	_	nours	aevices	censorea
	degrees C			
1	40	1298	1	0
2	40	1390	1	0
3	40	3187	1	0
4	40	3241	1	0
5	40	3261	1	0
6	40	3313	1	0
7	40	4501	1	0
8	40	4568	1	0
9	40	4841	1	0
10	40	4982	1	0
11	40	5000	90	1
12	60	581	1	0
13	60	925	1	0
14	60	1432	1	0

Arrhenius models

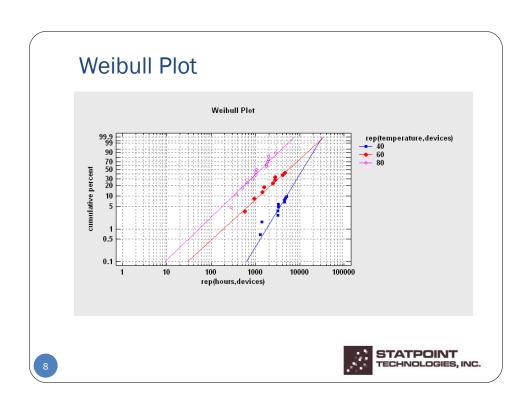
The percentiles *P* of the failure time distribution are assumed to change with temperature *T* according to the model

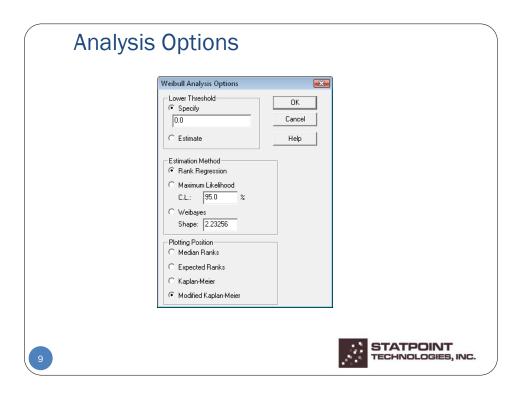
$$P = A \exp\left(-\frac{E}{kT}\right)$$

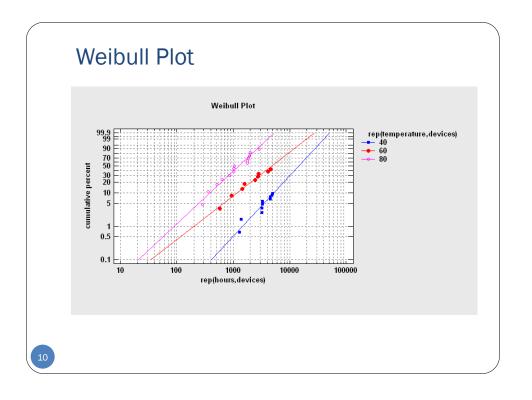
T is temperature in degrees Kelvin (${}^{\circ}$ C + 273.15) k = 1/11605 (Boltzmann's constant) *A* and *E* are two unknown parameters

Step #1: Fit a Weibull distribution at each temperature Weibull Analysis Temperature hours devices censored Censored: Censored:

STATPOINT TECHNOLOGIES, INC.







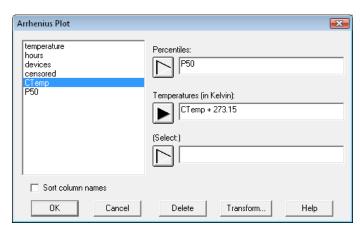
Step #2: Estimate the percentiles

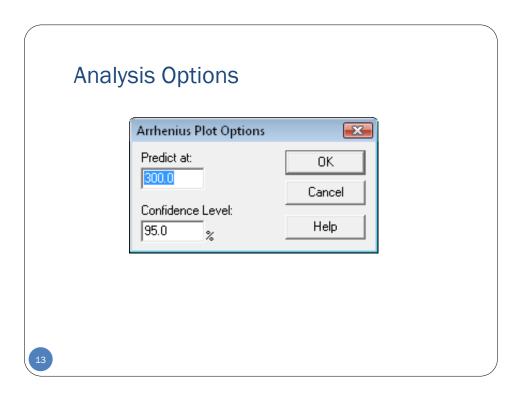
Critical Values for rep(hours,devices)

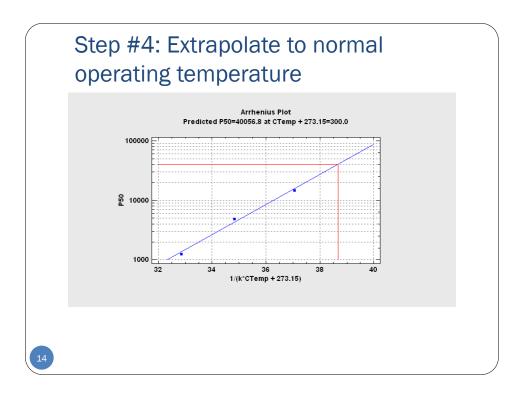
rep(temperature,devices)	X	Lower Tail Area (<)	Upper Tail Area (>)
40	14639.9	0.5	0.5
60	4846.64	0.5	0.5
80	1261.06	0.5	0.5

11

Step #3: Fit the Arrhenius model to the 50th percentiles







Example #5 – Cox Proportional Hazards

Source: Modeling Survival Data in Medical Research (Collett)

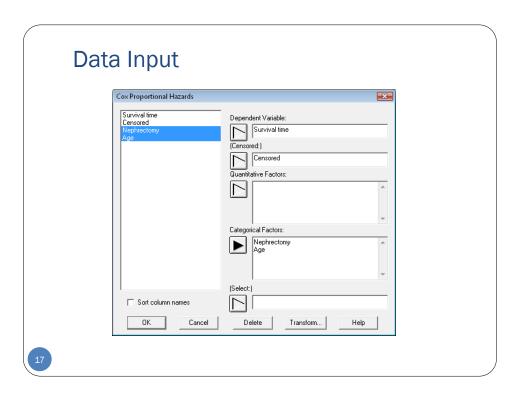
	Survival time	Censored	Nephrectomy	Age 4
	Sarriar Chie	constitu	периссесни	Age
4	_		-	
1	9	0	0	1
2	6	0	0	1
3	21	0	0	1
4	15	0	0	2
5	8	0	0	2
6	17	0	0	2
7	12	0	0	3
8	104	1	1	1
9	9	0	1	1
10	56	0	1	1
11	35	0	1	1
12	52	0	1	1
13	68	0	1	1
14	77	1	1	1
15	84	0	1	1

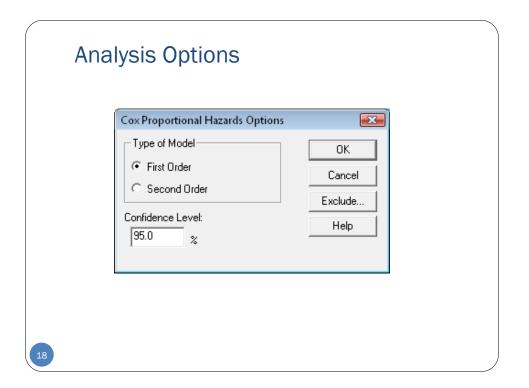
15

Cox PH Model

The hazard function at any combination of the X's is assumed to be proportional to the hazard at a baseline set of conditions.

$$h_x(t) = \exp(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_k X_k) h_0(t)$$





Analysis Summary

Cox Proportional Hazards - Survival time Dependent variable: Survival time Censoring: Censored Factors: Nephrectomy Age

Number of uncensored values: 32 Number of right-censored values: 4

Estimated Regression Model

		Standard	Lower 95.0%	Upper 95.0%
Parameter	Estimate	Error	Conf. Limit	Conf. Limit
Nephrectomy=1	-1.41108	0.377288	-2.15056	-0.67161
Age=2	0.0124456	0.330352	-0.635033	0.659924
Age=3	1.34132	0.448089	0.463082	2.21956

Log likelihood = -82.7542

Likelihood Ratio Tests

Factor	Chi-Square	Df	P-Value
Nephrectomy	6.66386	1	0.0098
Age	4.73827	2	0.0936

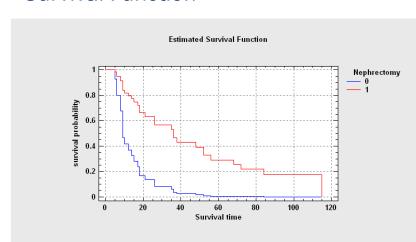
The StatAdvisor

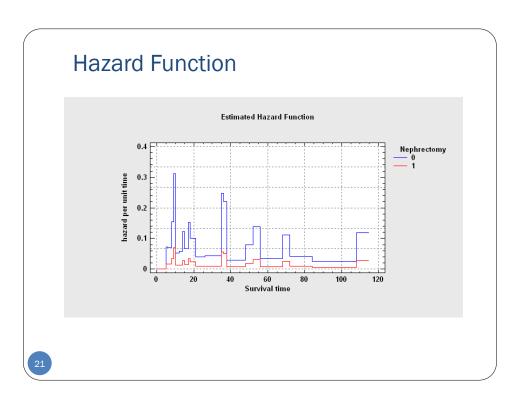
The output shows the results of fitting a failure-time regression model to describe the relationship between Survival time and 2 independent vanishle(s). The hazard function at a selected combination of the input factors x is a multiple of the baseline hazard function h(40), as shown below:

 $h(t|x) = h(t|0) * \exp(-1.41108 * Nephrectomy = 1 + 0.0124456 * Age = 2 + 1.34132 * Age = 3)$

In determining whether the model can be simplified, notice that the highest P-value for the likelihood ratio tests is 0.0936, belonging to Age. Because the P-value is greater or equal to 0.05, that term is not statistically significant at the 950% or higher confidence level. Consequently, you should consider removing Age from the model.

Survival Function





Example #6 – Life data regression

Source: <u>Statistical Methods for Reliability Data (</u>Meeker and Escobar)

	voltage	temperature	hours	Co1_4	Co1_5	Co1_6
12	300	170	628			
13	350	170	258			
14	350	170	258			
15	350	170	347			
16	350	170	588			
17	200	180	959			
18	200	180	1065			
19	200	180	1065			
20	200	180	1087			
21	250	180	216			
22	250	180	315			
23	250	180	455			
24	250	180	473			
25	300	180	241			

General failure time regression models

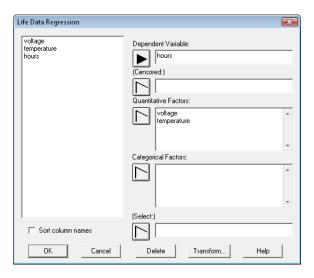
- Location-scale models (normal, logistic, smallest E.V.)
- Log-location-scale models (lognormal, loglogistic, Weibull, exponential):

$$P(T \le t) = \Phi\left(\frac{\log(t) - \mu}{\sigma}\right)$$

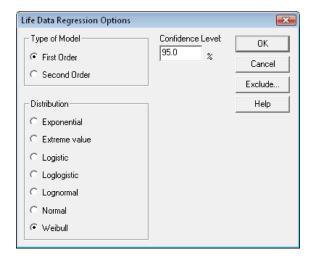
$$\mu = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots$$

23

Data input



Analysis Options



Analysis Summary

Life Data Regression - hours Dependent variable: hours Factors: voltage

temperature

Number of uncensored values: 32 Number of right-censored values: 0

stimated	Regression	Model -	Weibull

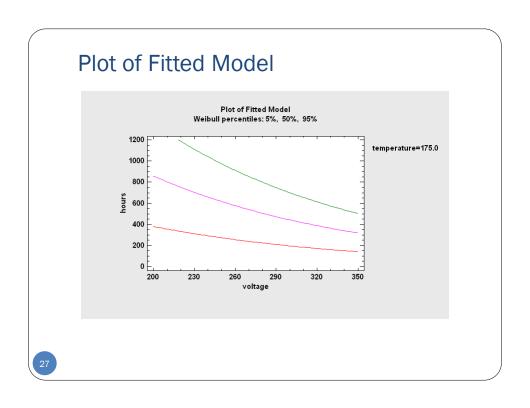
		Standard	Lower 95.0%	Upper 95.0%
Parameter	Estimate	Error	Conf. Limit	Conf. Limit
CONSTANT	11.6981	1.96481	7.84716	15.5491
voltage	-0.00660564	0.000883368	-0.00833701	-0.00487426
temperature	-0.0200546	0.0110668	-0.0417451	0.00163591
SIGMA	0.312591	0.0432654	0.238321	0.410007

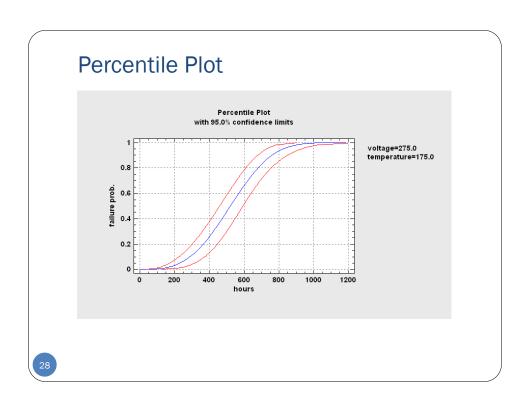
Log likelihood = -211.019

]	Likelihood Ratio Tests					
	Factor	Chi-Square	Df	P-Value		
	voltage	29.3505	1	0.0000		
		0.04450	-	0.0000		

The StatAdvisor
The output shows the results of fitting a failure-time regression model to describe the relationship between hours and 2 independent variable(s). The equation of the fitted model is

 $hours = \exp(11.6981 - 0.00660564*voltage - 0.0200546*temperature)$





Percentiles Table

Table of Inverse Predictions for hours voltage=275.0 temperature=175.0

		Standard	Lower 95.0%	Upper 95.0%
Percent	Percentile	Error	Conf. Limit	Conf. Limit
0.1	67.5506	21.7934	35.8931	127.13
0.5	111.788	28.418	67.9212	183.985
1.0	138.942	31.2525	89.4071	215.922
2.0	172.831	33.8385	117.751	253.675
3.0	196.498	35.1376	138.404	278.978
4.0	215.334	35.921	155.281	298.612
5.0	231.266	36.4308	169.834	314.92
6.0	245.231	36.7737	182.781	329.016
7.0	257.762	37.0057	194.543	341.525
8.0	269.198	37.1599	205.387	352.835
9.0	279.764	37.2571	215.494	363.203
10.0	289.623	37.3114	224.996	372.813
15.0	331.643	37.2028	266.186	413.197
20.0	366.192	36.7907	300.739	445.89
25.0	396.457	36.2715	331.376	474.321
30.0	424.014	35.7291	359.463	500.156
35.0	449.788	35.2101	385.811	524.374
40.0	474.4	34.7469	410.959	547.633
45.0	498.307	34.3677	435.302	570.432
50.0	521.89	34.1008	459.156	593.195
55.0	545.493	33.9785	482.801	616.325
60.0	569.466	34.0404	506.508	640.25
65 N	504 205	24 2202	520 575	665 A66

Second Order Model

<u>Life Data Regression - hours</u> Dependent variable: hours

Factors: voltage temperature

Number of uncensored values: 32 Number of right-censored values: 0

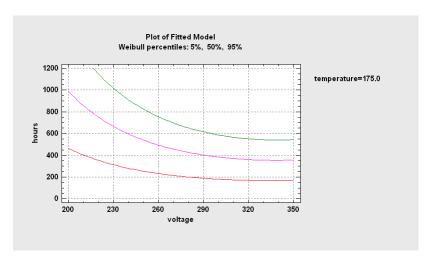
Estimated Regression Model - Weihull

Sumated Regression Wodel - Weibuii						
		Standard	Lower 95.0%	Upper 95.0%		
Parameter	Estimate	Error	Conf. Limit	Conf. Limit		
CONSTANT	17.5945	3.18682	11.3484	23.8406		
voltage	-0.0359453	0.0128568	-0.0611443	-0.0107464		
temperature	-0.0315621	0.0115497	-0.0541991	-0.00892516		
voltage^2	0.0000529916	0.0000231238	0.00000766959	0.0000983135		
SIGMA	0.289643	0.039891	0.221121	0.379397		

Log likelihood = -208.593

Likelihood Ratio Tests

DIREITHOOG KAID TESIS					
Factor	Chi-Square	Df	P-Value		
voltage	7.01463	1	0.0081		
temperature	6.42111	1	0.0113		
voltage^2	4.85271	1	0.0276		



31

More Information

Go to www.statgraphics.com

Or send e-mail to info@statgraphics.com

