

Life Tables (Time	S)
Life Tables (Times)	
Distance Censored	Data: Distance (Censored:) Censored (Group:)
Sort column names	(Select.)
OK Cancel	Delete Transform Help
8	

Distribution Fitting (Censored Dat	ta) 🗾
Distance Censored	Data: Distance Censoring: Censored (Select:)
Sort column names	
Sort column names	Delete Transform Help

Comparison of Alternative Distributions

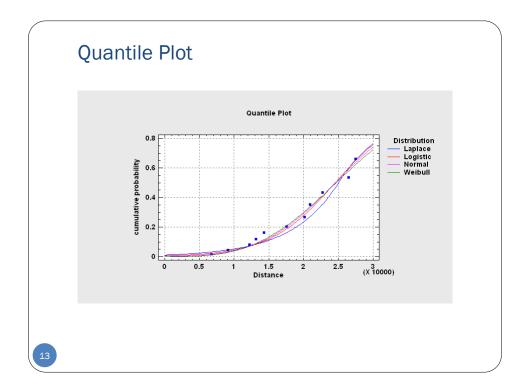
Comparison of Alternative Distributions

Distribution	Est. Parameters	Log Likelihood	KSD
Weibull	2	-404.991	0.0901357
Normal	2	-406.4	0.0903629
Logistic	2	-408.408	0.103344
Laplace	2	-413.516	0.108477
Smallest Extreme Value	2	-409.469	0.122783
Largest Extreme Value	2	-405.653	0.128409
Gamma	2	-404.845	0.128419
Loglogistic	2	-406.131	0.131113
Lognormal	2	-405.125	0.155015
Bimbaum-Saunders	2	-404.725	0.159099
Uniform	2	-400.338	0.159942
Inverse Gaussian	2	-404.796	0.16054
Exponential	1	-427.009	0.329046
Pareto	1	-510.249	0.448162

The StatAdvisor This table compares the goodness-of-fit when various distributions are fit to Distance. You can select other distributions using Pane Options.

According to the Kolmogorov-Smirnov D statistic, the best fitting distribution is the Weibull distribution. To fit this distribution, press the alternate mouse button and select Analysis Options.

Goodness-of-Fit Test


Goodness-of-Fit Tests for Distance

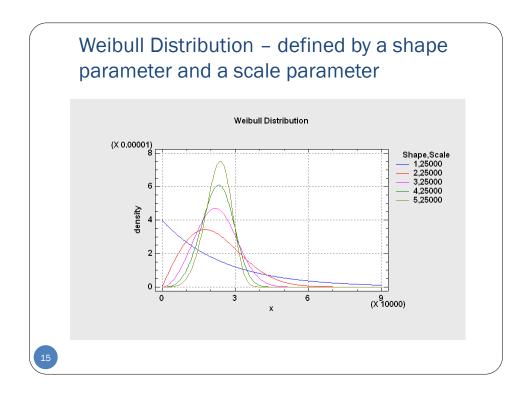
Kolmogorov	-Smirnov Te	est		
	Laplace	Logistic	Normal	Weibull
DPLUS	0.108477	0.0683565	0.0760417	0.0901357
DMINUS	0.108138	0.103344	0.0903629	0.087023
DN	0.108477	0.103344	0.0903629	0.0901357
P-Value	0.762511	0.811755	0.915578	0.917047

The StatAdvisor

This pane shows the results of tests run to determine whether Distance can be adequately modeled by various distributions.

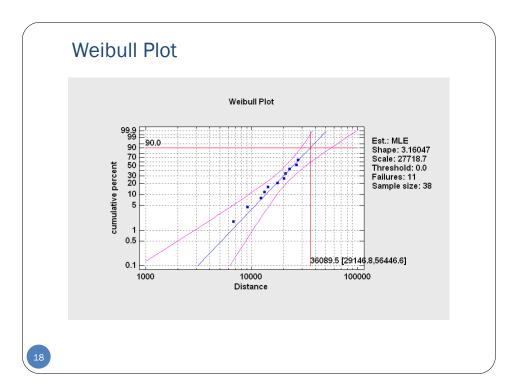
P-values less than 0.05 would indicate that Distance does not come from the selected distribution with 95% confidence.

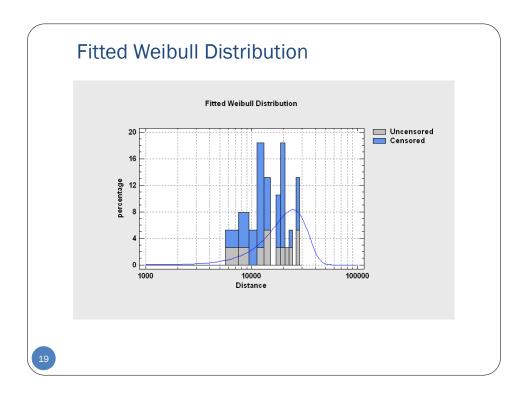
Critical Values (Percentiles)

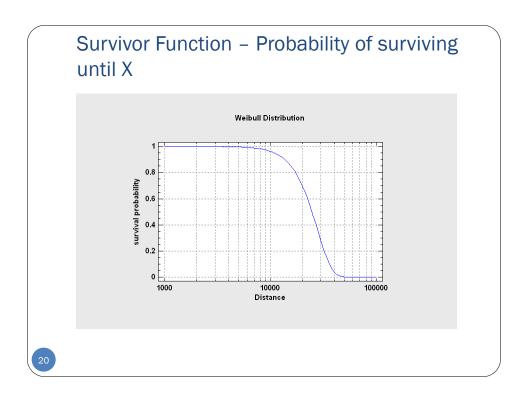

Critical Values for Distance

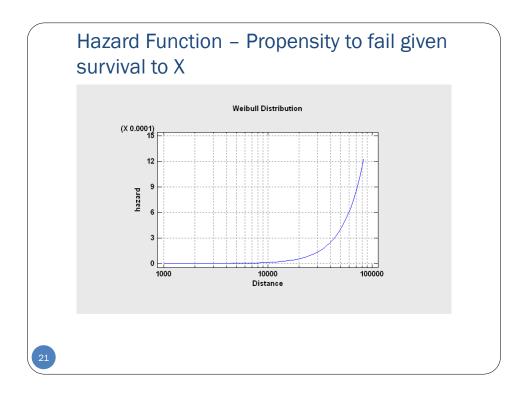
Lower Tail Area (<=)	Laplace	Logistic	Normal	Weibull
0.01	-1007.98	2647.43	5131.13	6466.15
0.1	14313.2	14074.0	13861.8	13600.0
0.5	25022.3	24544.4	24570.9	24683.6
0.9	35731.3	35014.8	35279.9	36089.5
0.99	51052.5	46441.4	44010.6	44939.6

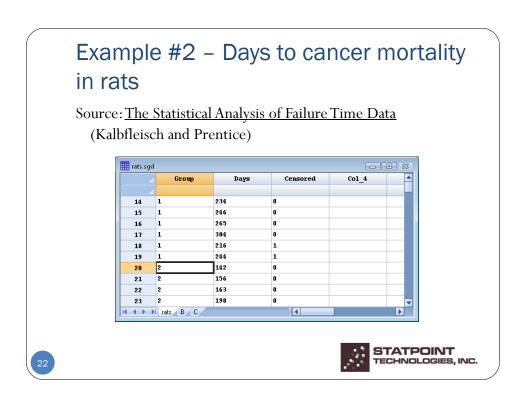
The StatAdvisor

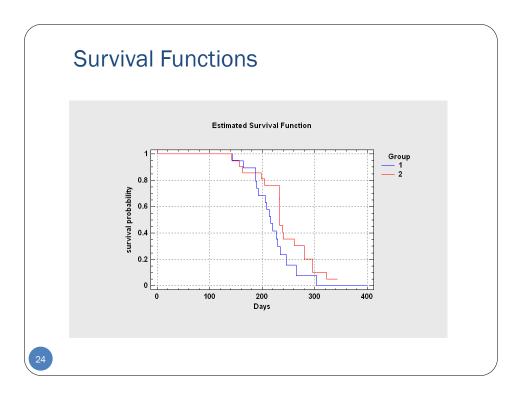

This pare calculates critical values for the fitted distributions. It will calculate the critical values for up to 5 lower tail areas, which you may specify by pressing the alternate mouse button and selecting Pane Options. For example, the output indicates that the value of the fitted Laplace distribution below which you would find an area equal to 0.01 is -1007.98.


14




Weibull Analysis	
Weibull Analysis	
Distance Censored	Data:
	(Censored:)
	(Group:)
Sort column names	(Select:)
OK Cancel	Delete Transform Help

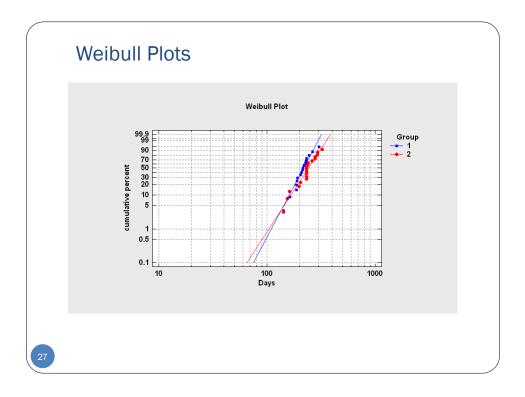

Weibull Analysis Opt	ons 🔀
Lower Threshold Specify 0.0 Estimate Estimation Method Rank Regression Maximum Likeliho C.L.: [95.0 Weibayes Shape: [3.1604] Plotting Position Median Ranks Expected Ranks Kaplan-Meier	od %

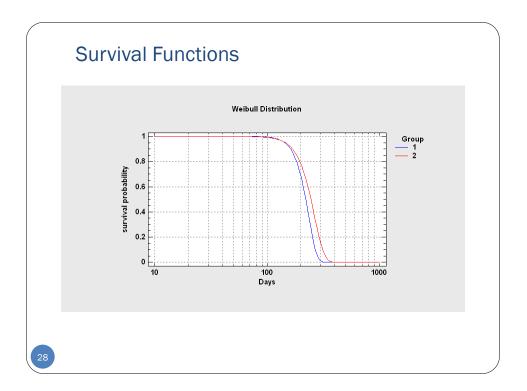


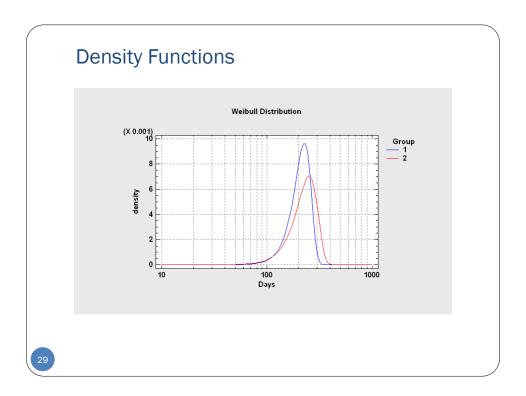
Life	Tables (Times)
	Life Tables (Times)	
	Group Days Censored	Data:
		(Censored:)
		(Group:)
	🦳 Sort column names	(Select)
	OK Cancel	Delete Transform Help
23		

Group Comparisons

Comparison of Groups


				Proportion
Group	Total	Failed	Withdrawn	Withdrawn
1	19	17	2	0.1053
2	21	19	2	0.0952
Total	40	36	4	0.1000


<u>Logrank test</u> Chi-square = 3.12271 P-value = 0.0772045


<u>Wilcoxon test</u> Chi-square = 2.65104 P-value = 0.103478

The StatAdvisor This table displays information regarding each group of data values. It shows the total number of items tabulated, the number of items which failed, the number withdrawn or censored, and the proportion of censored items. Two tests have also been performed to determine whether there is a statistically significant difference between the survival probabilities of the 2 groups. Since the smallest P-value is greater than or equal to 0.05, there is not a statistically significant difference between the groups at the 95% confidence level.

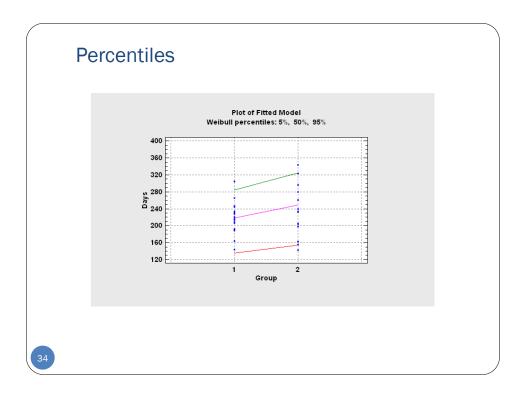
Weibull Analysis	
Weibull Analysis	
	Data: Days (Censored:) Censored (Group:) Group
Sort column names	(Select)
OK Cancel	Delete Transform Help
26	

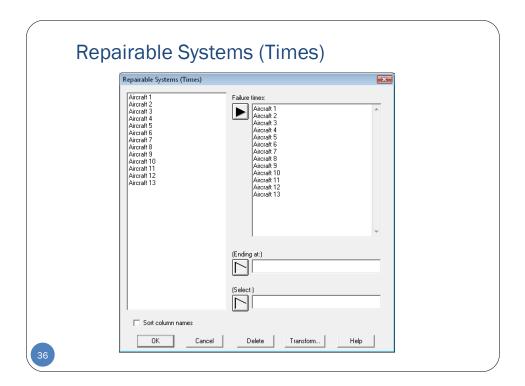
Test for Significant Differences

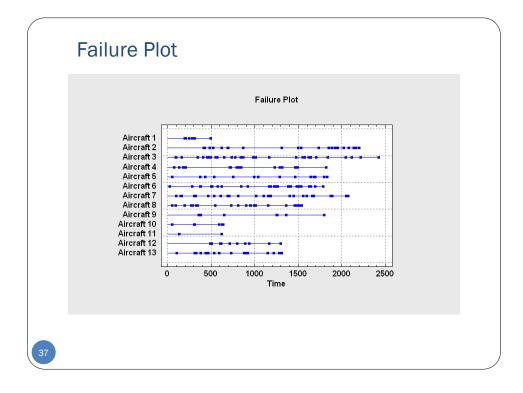
Postulate a loglinear model for the percentiles of the lifetime distribution for group j:

$$F(t_j) = \Phi\left(\frac{\log(t) - \mu_j}{\sigma}\right)$$

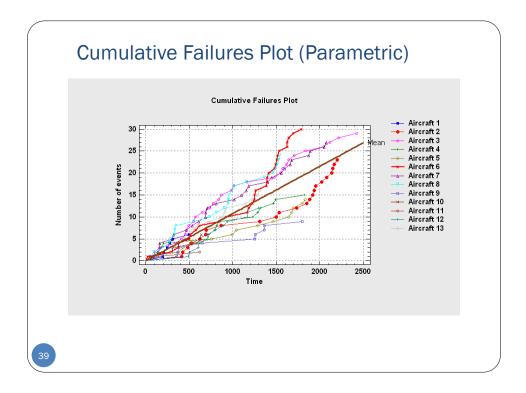
Let μ_j be a function of an indicator variable I_j that takes the value 0 for one group and 1 for the other group:


$$\mu_j = \beta_0 + \beta_1 I_j$$

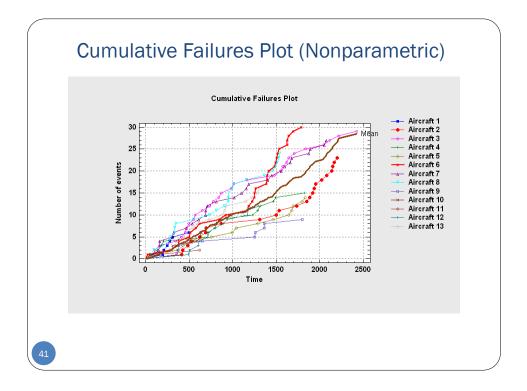

Group Days Censo		Dependent Variable: Days (Censored:) Censored Quantitative Factors:		
		Categorical Factors:	 *	
		(Select:)	~	
	Sort column names			

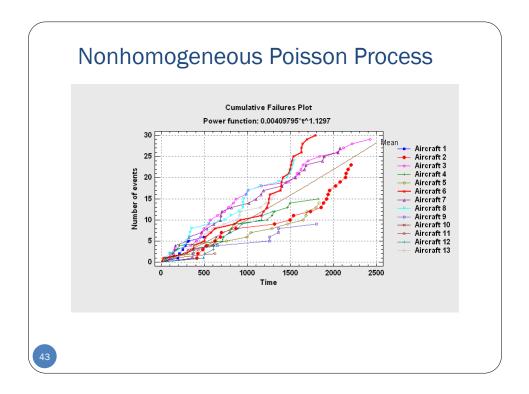

Life Data Regression Options		
Type of Model First Order Second Order Distribution Exponential Extreme value Loglogistic Loglogistic Normal Weibull	Confidence Level:	OK Cancel Exclude Help

Dependent var Censoring: Cer Factors:					
Group					
Number of uno Number of righ					
-					
Estimated Reg	ression Mode	1 - Weibull Standard	Lower 95.0%	Upper 95.0%	
Parameter	Estimate	Error	Conf. Limit	Conf. Limit	
CONSTANT	5.58282	0.0429976	5.49855	5.6671	
Group=1	-0.131956	0.0612686	-0.25204	-0.0118717	
SIGMA	0.183325	0.0230552	0.143276	0.234569	
Log likelihood		10.0200002	0.1 0.070	0.20 000	
Likelihood Ra		P-Value			
Factor Chi Group 4.12	-Square Df 72 1	0.0422	_		
	74 11	0.0422			



					0 -	
urce	e: <u>The Sta</u>	atistical A	<u>Analysis c</u>	of Series	of Event	<u>s (</u> Cox ar
Lew	rie)					
LEW	15)					
C:\Do	Data 16Hold\failures.sgd					
	Aircraft 1	Aircraft 2	Aircraft 3	Aircraft 4	Aircraft 5	Aircraft 6
1	194	413	90	74	55	23
2	209	427	100	131	375	284
3	250	485	160	179	431	371
4	279	522	346	208	535	378
5	312	622	407	710	755	498
6	493	687	456	722	994	512
7		696	470	792	1041	574
8		865	494	813	1287	621
9		1312	550	842	1463	846
10		1496	570	1228	1645	917
11		1532	649	1287	1678	1163
12		1733	733	1314	1693	1184




epairable Systems (Times) Opt	ions		
Model C Homogeneous Poisson proce	ss Rate Mode	Rate Model OK	
 Stationary renewal process Nonhomogenous Poisson pro 	C Second	er exponential order exponential der exponential tel	
Interevent Distribution			
C Birnbaum-Saunders	C Generalized Logistic	C Lognormal (3-parameter	
C Cauchy	C Half Normal	C Maxwell	
C Exponential	C Inverse Gaussian	C Normal	
C Exponential (2-parameter)	C Laplace	C Pareto	
C Exponential Power	C Largest Extreme Value	C Pareto (2-parameter)	
C Folded Normal	C Logistic	C Rayleigh	
O Gamma	C Loglogistic	C Smallest Extreme Value	
C Gamma (3-parameter)	C Loglogistic (3-parameter)	Weibull	
C Generalized Gamma	C Lognormal	C Weibull (3-parameter)	

Dodat I	Process Model			
	stationary rer			
	ode1: 0.0107646			
	cumulative eve rent distributio	nts model: 0.0107646*t n: Weibull		
	pe = 0.924492	11. 11 610 611		
	e = 89.5547			
(IVI e	an = 92.8974)			
t	Rate	Mean cum events	Mean interevent time	
0	0.0107646	0.0	92.8974	
500	0.0107646	5.38228	92.8974	
1000	0.0107646	10.7646	92.8974	
1500	0.0107646	16.1468	92.8974	
2000	0.0107646	21.5291	92.8974	
2500	0.0107646	26.9114	92.8974	
a	6 E 11 T			
	ess-of-Fit Test	;		
	ogorov-Smirno	ov D P-value		

Trend Test Trend Test Laplace Centroid Test Test statistic P-Value 0.971167 0.025388 Aircraft : 0.0361374 Aircraft 2 Aircraft 3 2.23544 -1.4804 0.138765 Aircraft 4 0.453424 0.965489 0.334299 Aircraft 5 Aircraft (2.20647 0.0273513 -0.544738 0.256495 0.585931 0.797565 Aircraft 7 Aircraft 8 Aircraft 9 -0.144248 0.689743 0.8853 Aircraft 10 0.490354 -1.0092 1.17291 Aircraft 11 0.312875 Aircraft 12 0.240831 Aircraft 13 0.269283 0.787708 COMBINED 1.09474 The StatAdvisor The share table displays a test for trend. The Laplace Centroid Test tests whether the event times are uniformly distributed over the sampling interval. A small P-value indicates the presence of a trend. For example, since the P-value calculated when combining all of the variables is greater than| or equal to 0.05, there is not a statistically significant trend at the 5.0% significance level.

