statgraphics®

Fitting Regression Models Containing Categorical Factors

Presented by Dr. Neil W. Polhemus

Virginia Piedmont

Type of grass affects population of wild birds

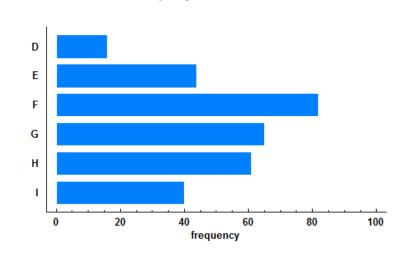
Cool season grasses

Warm season grasses

Outline

- 1. Linear models with a single predictor
- 2. Linear models with multiple predictors
- 3. Logistic regression
- 4. Nonlinear regression models
- 5. Life data regression

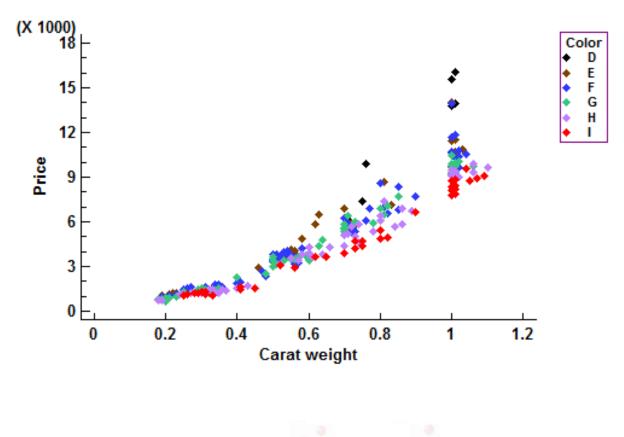
Example: Pricing of Diamonds

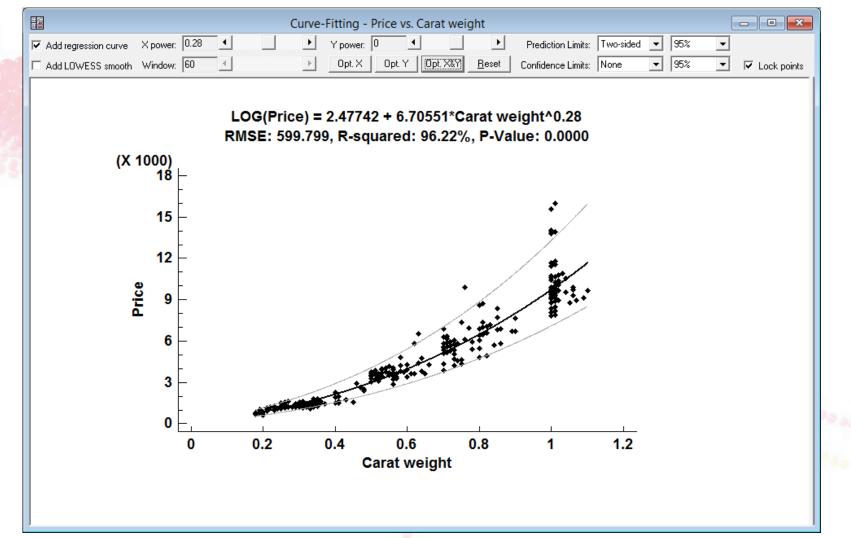

 The file *diamonds.sgd* contains information on 308 diamonds. (JSE Data Archive, Singfat Chu, National University of Singapore)

		diamo	onds.sgd		
	Carat weight	Color	Clarity	Certification body	Price
4					
1	0.3	D	VS2	GIA	1302
2	0.3	Е	VS1	GIA	1510
3	0.3	G	VVS1	GIA	1510
4	0.3	G	VS1	GIA	1260
5	0.31	D	VS1	GIA	1641
6	0.31	E	VS1	GIA	1555
7	0.31	F	VS1	GIA	1427
8	0.31	G	VVS2	GIA	1427
9	0.31	Н	VS2	GIA	1126
10	0.31	I	VS1	GIA	1126
11	0.32	F	VS1	GIA	1468
12	0.32	G	VS2	GIA	1202
	diamonds B (7	I		Þ

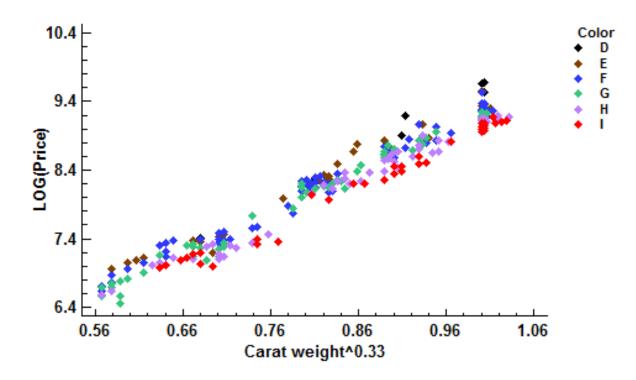
Models with a single categorical predictor

- Dependent variable: Y = Price
- Independent variable: X = Carat weight
- Categorical variable: C = Color (6 levels)


Frequency Tabulation for Color


Coded Scatterplot

Plot of Price vs Carat weight


Transformation

Transformed Data

Plot of LOG(Price) vs Carat weight^0.33

Statistical Model

 $Y = \beta_0 + \beta_1 I_1 + \beta_2 I_2 + \beta_3 I_3 + \beta_4 I_4 + \beta_5 I_5$ $+ \beta_6 X + \beta_7 I_1 X + \beta_8 I_2 X + \beta_9 I_3 X + \beta_{10} I_4 X + \beta_{11} I_5 X$

where

Y=LOG(Price)

 $X = Carat weight^{0.33}$

Color	11	12	13	14	15
D	0	0	0	0	0
E	1	0	0	0	0
F	0	1	0	0	0
G	0	0	1	0	0
Н	0	0	0	1	0
I	0	0	0	0	1

Model by Color

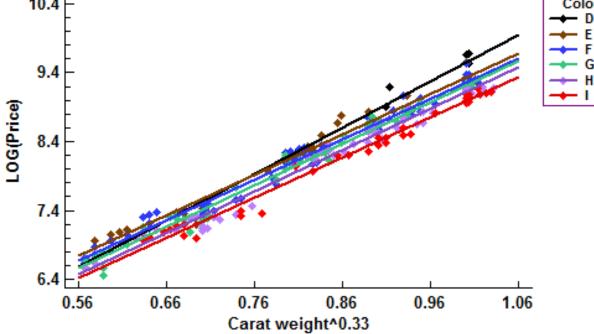
Color D: $Y = \beta_0 + \beta_6 X$

Color E: $Y = (\beta_0 + \beta_1) + (\beta_6 + \beta_7)X$

Color F: $Y = (\beta_0 + \beta_2) + (\beta_6 + \beta_8)X$

Color G: $Y = (\beta_0 + \beta_3) + (\beta_6 + \beta_9)X$

Color H: $Y = (\beta_0 + \beta_4) + (\beta_6 + \beta_{10})X$


Color I: $Y = (\beta_0 + \beta_5) + (\beta_6 + \beta_{11})X$

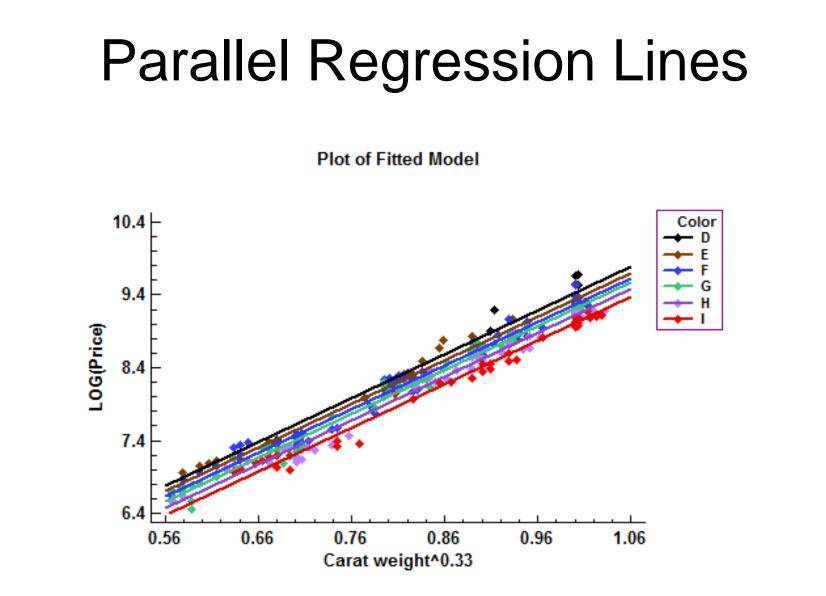
Comparison of Regression Lines

	Compa	arison of Regression Lines	
A REAL PROPERTY OF A REAL PROPER	Carat weight Color Clarity Certification body Price	Dependent Variable: LOG(Price) Independent Variable: Carat weight^0.33 Level Codes: Color (Select:)	
	OK Cancel		
		statgraphics.com	12

Fitted Regression Model

Test for Differences in the Slopes and Intercepts

Conditional sums of squares


Further ANOVA for Variables in the Order Fitted

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Carat weight^0.33	195.846	1	195.846	16521.44	0.0000
Intercepts	3.96947	5	0.793893	66.97	0.0000
Slopes	0.249657	5	0.0499314	4.21	0.0010
Model	200.065	11			

Simplify the model using Analysis Options

Comparison of Regression Lines Options					
Assume Equal Intercepts	ОК				
Assume Equal Slopes	Cancel				
	Help				
· · ·					

Fitted Model

Comparison of Regression Lines - LOG(Price) versus Carat weight^0.33 by Color

Dependent variable: LOG(Price) Independent variable: Carat weight^0.33 Level codes: Color

Number of complete cases: 308 Number of regression lines: 6

Multiple Regression Analysis

		Standard	Τ	
Parameter	Estimate	Error	Statistic	P-Value
CONSTANT	2.83694	0.147535	19.2289	0.0000
Carat weight^0.33	6.7001	0.173817	38.5469	0.0000
Color=E	0.626838	0.18309	3.42366	0.0007
Color=F	0.536887	0.166205	3.23027	0.0014
Color=G	0.339188	0.167165	2.02906	0.0433
Color=H	0.277087	0.176293	1.57174	0.1171
Color=I	0.320909	0.187515	1.71137	0.0881
Carat weight^0.33*Color=E	-0.844063	0.215945	-3.90869	0.0001
Carat weight^0.33*Color=F	-0.821593	0.196678	-4.17735	0.0000
Carat weight^0.33*Color=G	-0.661424	0.19826	-3.33614	0.0010
Carat weight^0.33*Color=H	-0.700254	0.206253	-3.39512	0.0008
Carat weight^0.33*Color=I	-0.871306	0.21686	-4.01783	0.0001

Coefficients

Color	Intercept	Slope
D	2.83694	6.7001
E F	3.46378	5.85604
	3.37383	5.87851
G	3.17613	6.03868
H	3.11403	5.99985
I	3.15785	5.8288

Analysis of Variance

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Model	200.065	11	18.1877	1534.31	0.0000
Residual	3.5088	296	0.011854		
Total (Corr.)	203.574	307			

R-Squared = 98.2764 percent R-Squared (adjusted for d.f.) = 98.2123 percent Standard Error of Est. = 0.108876 Mean absolute error = 0.0833828 Durbin-Watson statistic = 1.18873 (P=0.0000) Lag 1 residual autocorrelation = 0.401379

16

Multiple Predictors

- When dealing with multiple categorical and quantitative predictors, we can use either of 2 procedures:
 - Multiple Regression (have to type in expressions for each indicator variable)
 - GLM: General Linear Model (automatically generates the indicator variables)
- Be careful: the indicator variables are set up differently in GLM (as well as the DOE procedures.)

Coding Comparison

Comparison of Regression Lines

	Color	l1	12	13	14	15
9	D	0	0	0	0	0
	E	1	0	0	0	0
	F	0	1	0	0	0
	G	0	0	1	0	0
	н	0	0	0	1	0
	I	0	0	0	0	1

GLM and DOE

				and the second se	
Color	11	12	13	14	15
D	1	0	0	0	0
E	0	1	0	0	0
F	0	0	1	0	0
G	0	0	0	1	0
Н	0	0	0	0	1
1	-1	-1	-1	-1	-1

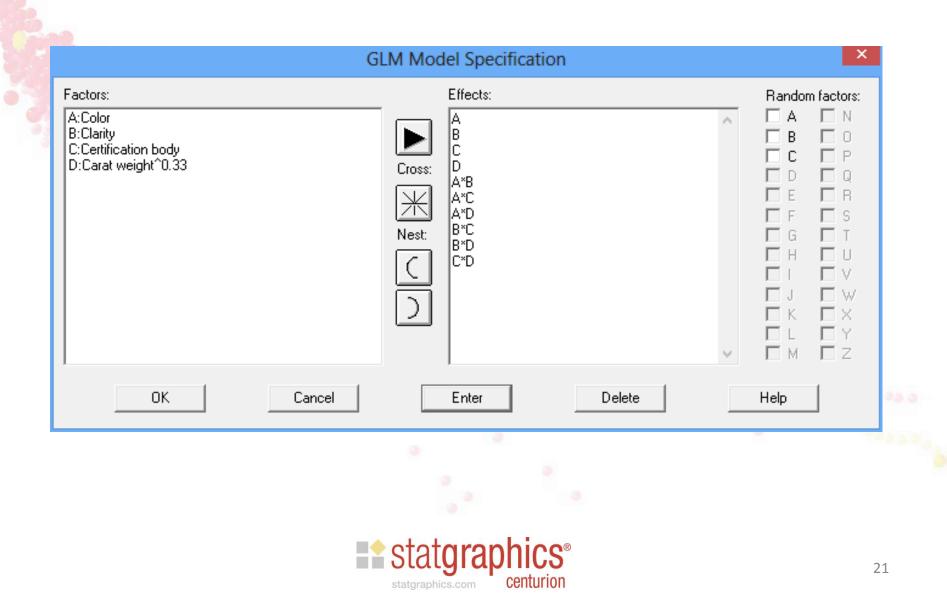
Model Comparison

Comparison of Regression Lines

Color	Intercept	Slope
D	β ₀	β_6
E	$\beta_0 + \beta_1$	$\beta_6 + \beta_7$
F	$\beta_0 + \beta_2$	$\beta_6 + \beta_8$
G	$\beta_0 + \beta_3$	$\beta_6 + \beta_9$
Н	$\beta_0 + \beta_4$	$\beta_6 + \beta_{10}$
I	$\beta_0 + \beta_5$	$\beta_6 + \beta_{11}$

GLM and DOE

Color	Intercept	Slope
D	$\beta_0 + \beta_1$	$\beta_6 + \beta_7$
E	$\beta_0 + \beta_2$	$\beta_6 + \beta_8$
F	$\beta_0 + \beta_3$	$\beta_6 + \beta_9$
G	$\beta_0 + \beta_4$	$\beta_6 + \beta_{10}$
н	$\beta_0 + \beta_5$	$\beta_6 + \beta_{11}$
I	$\beta_0 - (\beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5)$	$\beta_6 - (\beta_7 + \beta_8 + \beta_9 + \beta_{10} + \beta_{11})$



Data Input Dialog Box

Ger	neral Linear Models	×	
Carat weight Color Clarity Certification body Price	Dependent Variables:	< _	
	Categorical Factors: Color Clarity Certification body	^	
	Quantitative Factors:	~	
			8° 0 0
	(Weights:)	~	2 000 03 03 03 0 00 000 000 000 000 000
Sort column names	Delete Transform Help		

Model Specification

Results

General Linear Models

Number of dependent variables: 1 Number of categorical factors: 3 A=Color B=Clarity C=Certification body Number of quantitative factors: 1 D=Carat weight^0.33 Number of observations: 308

Analysis of Variance for LOG(Price)

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Model	202.896	61	3.32616	1206.95	0.0000
Residual	0.677934	246	0.00275583		
Total (Corr.)	203.574	307			

Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Color	0.13531	5	0.027062	9.82	0.0000
Clarity	0.0865789	4	0.0216447	7.85	0.0000
Certification body	0.0585465	2	0.0292733	10.62	0.0000
Carat weight^0.33	35.7245	1	35.7245	12963.25	0.0000
Color*Clarity	0.130609	20	0.00653043	2.37	0.0011
Color*Certification body	0.033009	10	0.0033009	1.20	0.2929
Color*Carat weight^0.33	0.0286298	5	0.00572597	2.08	0.0688
Clarity*Certification body	0.0173235	8	0.00216543	0.79	0.6156
Clarity*Carat weight^0.33	0.0320343	4	0.00800858	2.91	0.0224
Certification body*Carat weight^0.33	0.0489169	2	0.0244584	8.88	0.0002
Residual	0.677934	246	0.00275583		
Total (corrected)	203.574	307			

Simplified Model

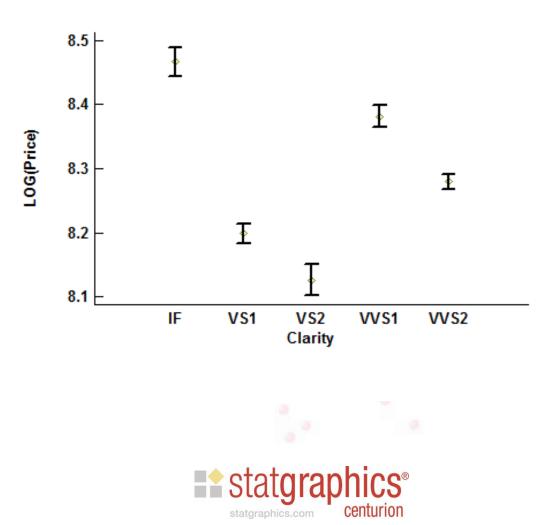
Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Color	4.40806	5	0.881612	312.82	0.0000
Clarity	0.203955	4	0.0509888	18.09	0.0000
Certification body	0.0697858	2	0.0348929	12.38	0.0000
Carat weight^0.33	68.6518	1	68.6518	24359.17	0.0000
Color*Clarity	0.141277	20	0.00706386	2.51	0.0005
Clarity*Carat weight^0.33	0.0669007	4	0.0167252	5.93	0.0001
Certification body*Carat weight^0.33	0.052897	2	0.0264485	9.38	0.0001
Residual	0.758126	269	0.00281831		
Total (corrected)	203.574	307			

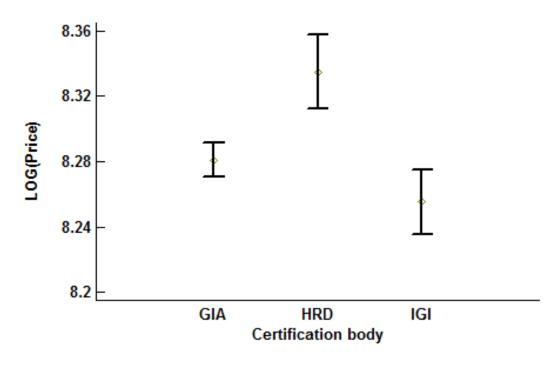
Predicting New Observations

1		C:\Data\webinar\diamonds.sgd								
		Carat weight	Color	Clarity	Certification body	Price				
1										
	302	1.01	Н	VS1	HRD	9153				
	303	1.01	I	VVS1	HRD	8873				
	304	1.01	I	VS1	HRD	8175				
	305	1.02	F	VVS2	HRD	10796				
	306	1.06	Н	VVS2	HRD	9890				
	307	1.02	Н	VS2	HRD	8959				
	308	1.09	I	VVS2	HRD	9107				
	309	.75	E	VVS2	HRD		-			
		diamonds B C		i			•			

Model Results for LOG(price)


	Fitted	Stnd. Error	Lower 95.0% CL	Upper 95.0% CL	Lower 95.0% CL	Upper 95.0% CL
Row	Value	for Forecast	for Forecast	for Forecast	for Mean	for Mean
309	8.85939	0.0564242	8.7483	8.97048	8.82176	8.89703

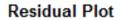
Expression:		
EXP(8.85939) Variables: Carat weight Color Clarity Certification body Price	$7 8 9 + = \langle \rangle$ $4 5 6 \cdot \langle \rangle$ $4 5 6 \cdot \langle \rangle$ $1 2 3 * \langle = \rangle = ASI$ $0 \cdot \uparrow I$ Enter ASI	rators: 5(?) 156(?) 156(?) 157(?) 158(?)
Result: 7040.18692045 Clear	Cancel Help	1

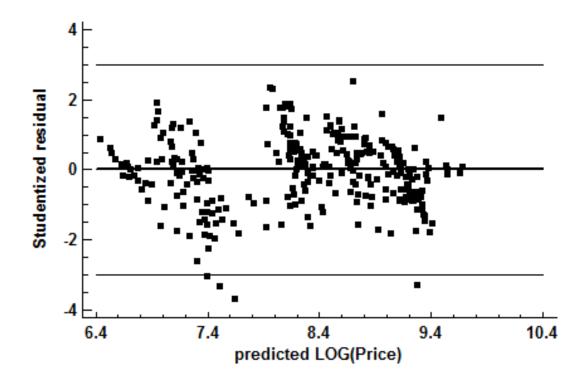

Least Squares Means

Means and 95.0 Percent LSD Intervals

Least Squares Means

Means and 95.0 Percent LSD Intervals





Residual Plot

Logistic Regression

Can we predict how well Barry Bonds would do when he came to bat?

Bonds Data from 2001

							C:\D	ata\webi	nar\barryb	onds.sgd						
		Game number	At-bat	Home game	On first	On second	On third	Outs	Inning	Runs in inning	Walk	Intentional walk	Result	ERA	Giants score	Opposing team score
			within game	1=TRUE						after first pitch to Bomds			>0 if got on base	opposing pitcher	before at-bat	before at-bat
	1	1	1	1	1	0	0	1	1	0	0	0	0	4.20	0	0
	2	1	2	1	0	1	0	1	3	0	1	1	5	4.20	0	0
	3	1	3	1	0	0	0	1	5	1	0	0	4	4.20	1	0
	4	1	4	1	1	0	1	2	6	0	1	0	5	5.49	3	1
	5	1	5	1	0	0	0	2	8	0	0	0	0	4.00	3	2
	6	2	1	1	0	0	0	2	1	0	0	0	0	5.75	0	0
	7	2	2	1	1	1	0	2	3	0	0	0	0	5.75	0	3
	8	2	3	1	0	1	0	2	5	0	0	0	0	5.75	1	4
	9	2	4	1	1	0	0	1	7	3	0	0	2	4.00	4	5
	10	2	5	1	1	0	0	2	8	0	1	0	5	5.21	7	6
	11	3	1	1	0	0	0	2	1	0	0	0	0	4.30	0	1
	12	3	2	1	1	0	0	2	3	3	0	0	1	4.30	1	1
	13	3	3	1	1	0	0	2	5	0	0	0	0	4.30	4	2
H		barrybonds	BC		<u>^</u>	•	~	^	-		^	•	•		-	•

n = 648 at-bats

Source: JSE Data Archive, Jerome P. Reiter, Duke University

Model

- Y = 1 if Bonds reached base and 0 otherwise
- Predictors:
 - ERA of opposing pitcher
 - Runs already scored that inning
 - Opposing team's score
 - Inning
 - # of outs when he came to bat
 - Whether a runner was on first base
 - Whether a runner was on second base
 - Whether a runner was on third base
 - Whether it was a home game

Data Input Dialog Box

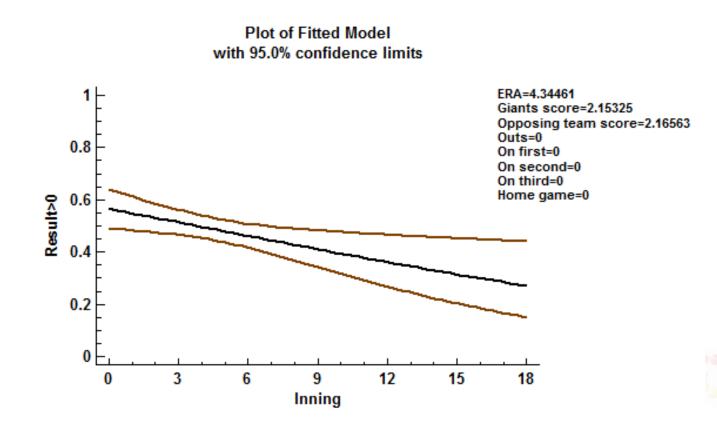
Lo	ogistic Regression	×
Game number At-bat Home game On first On second On third Outs Inning Runs in inning Walk Intentional walk Result ERA Giants score Opposing team score	Dependent Variable: Period Result>0 (Sample Sizes:) Quantitative Factors: ERA Giants score Opposing team score Inning Categorical Factors:	<
	Outs On first On second On third Home game	^
Sort column names		
OK Cancel	Delete Transform Help	

Analysis Options

	Log	istic Regression Options	×		
Sma C Sma C C	ethod Maximum Likelihood Weighted Least Squares allest Proportion: /n odel First Order Second Order Include Constant	Fit All Variables Forward Selection Backward Selection P-to-Enter: P-to-Enter: 0.05 0.05 Max. Steps: 50 Display C Final Model Only I Steps	OK Cancel Exclude Help		
				••••	
	•	statgraphics.com			32

Results

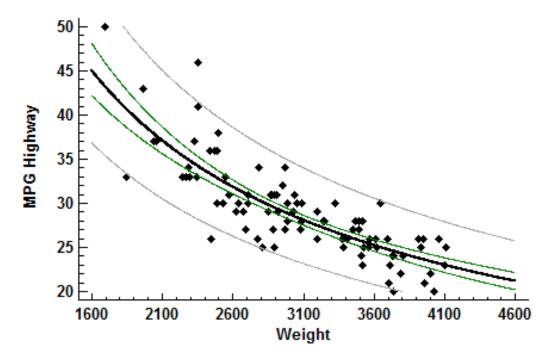
Likelihood Ratio Tests


Factor	Chi-Square	Df	P-Value
Inning	6.34437	1	0.0118
On second	12.3916	1	0.0004

Estimated Regression Model (Maximum Likelihood)

		Standard	Estimated
Parameter	Estimate	Error	Odds Ratio
CONSTANT	1.02656	0.250474	
Inning	-0.0695187	0.0277701	0.932843
On second=0	-0.762319	0.221567	0.466583

Plot of Probability of Reaching Base


Nonlinear Models

- Data file: 93cars.sgd
 - Y: MPG Highway
 - X: weight
 - C: manual
- The relationship between Y and X is nonlinear.

Multiplicative Model

Plot of Fitted Model MPG Highway = exp(9.08805 - 0.715651*In(Weight))

Nonlinear Regression

	Nonlinear Regression	
Make Model Type Min Price Mid Price MPG City MPG City MPG Highway Air Bags Drive Train Cylinders Engine Size Horsepower RPM Revs per Mile Manual Fueltank Passengers Length Wheelbase Width U Turn Space Rear seat	Dependent Variable: MPG Highway Function: EXP(B0+B1*LOG(weight)+B2*Manual) (Weights:) (Weights:) (Select:)	
Call Sort column names	ncel Delete Transform Help	
	statgraphics.com	37

Results

Nonlinear Regression - MPG Highway

Dependent variable: MPG Highway (miles per gallon in highway driving) Independent variables: weight (pounds) manual (0=no, 1=yes)

Function to be estimated: EXP(B0+B1*LOG(weight)+B2*manual) Initial parameter estimates: B0 = 0.1 B1 = 0.1 B2 = 0.1 Number of observations: 93

Estimation method: Marquardt Estimation stopped due to convergence of parameter estimates. Number of iterations: 10 Number of function calls: 45

Estimation Results

			Asymptotic	95.0%
		Asymptotic	Confidence	Interval
Parameter	Estimate	Standard Error	Lower	Upper
B0	9.66687	0.494256	8.68495	10.6488
B1	-0.783745	0.060318	-0.903577	-0.663912
B2	-0.0440352	0.0292223	-0.10209	0.0140201

Analysis of Variance

Source	Sum of Squares	Df	Mean Square
Model	80506.6	3	26835.5
Residual	786.421	90	8.73801
Total	81293.0	93	
Total (Corr.)	2615.31	92	

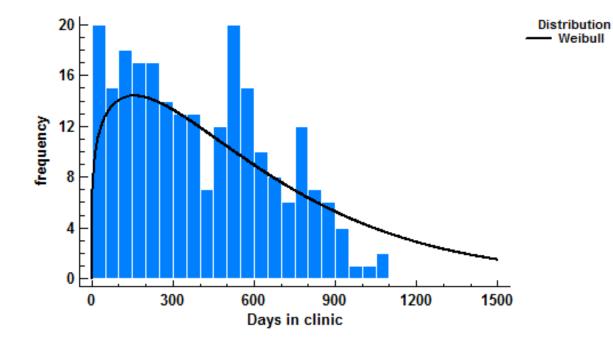
R-Squared = 69.9301 percent R-Squared (adjusted for d.f.) = 69.2619 percent Standard Error of Est. = 2.95601 Mean absolute error = 2.19093 Durbin-Watson statistic = 1.65999 Lag 1 residual autocorrelation = 0.168988 MPG Highway = EXP(9.66687 -0.783745*LOG(weight) -0.0440352*manual)

Life Data Regression

Data file: methadone.sgd

▦	methadone.sgd						
	Clinic	Censored	Days in clinic	Prison?	Dose 🔺		
	1 or 2	1=still in clinic		1=spent time in prison	•		
1	1	0	428	0	50		
2	1	0	275	1	55		
3	1	0	262	0	55		
4	1	0	183	0	30		
5	1	0	259	1	65		
6	1	0	714	0	55		
7	1	0	438	1	65		
8	1	1	796	1	60		
9	1	0	892	0	50		
10	1	0	393	1	65		
11	1	1	161	1	80		
12	1	0	836	1	60		
13	1	0	523	0	55		
14	1	0	612	0	70 🔽		
	methadone B C				Þ		

Caplehorn, J. (1991). Methadone dosage and retention of patients in maintenance treatment. *Medical Journal of Australia*.



Distribution Fitting

2	Distribut	ion Fitting (Censored Data)	
	Clinic Censored Days in clinic Prison? Dose	Data: Days in clinic Censoring: Censored (Select:)	
	Sort column names		
	OK Cancel	Delete Transform Help	
		statgraphics.com centurion	40

Distribution Fitting

Histogram for Days in clinic

Data Input Dialog Box

Li	fe Data Regression	×	
Clinic Censored Days in clinic Prison? Dose	Dependent Variable: Days in clinic (Censored:) Censored Quantitative Factors: Dose	~	
	Categorical Factors: Clinic Prison?	>	0 0 0 000
Sort column names	(Select:)		
OK Cancel	Delete Transform Help		1000 - 100 -
	· · · ·		
S	tat oraphics ®		40

centurion

Analysis Options

	Life Data Reg Type of Model First Order Second Order Distribution Exponential Extreme value Logistic Loglogistic Lognormal Normal Weibull	Confidence Level:	Cancel Exclude Help	
L	stat	praphics® centurion		43

Results

Life Data Regression - Days in clinic

Dependent variable: Days in clinic Censoring: Censored (1=still in clinic) Factors: Dose Clinic (1 or 2) Prison? (1=spent time in prison)

Number of uncensored values: 150 Number of right-censored values: 88

Estimated Regression Model - Weibull

		Standard	Lower 95.0%	Upper 95.0%
Parameter	Estimate	Error	Conf. Limit	Conf. Limit
CONSTANT	5.29378	0.309429	4.68731	5.90025
Dose	0.0244232	0.00459046	0.015426	0.0334203
Clinic=1	-0.709329	0.157267	-1.01757	-0.401091
Prison?=0	0.229509	0.120806	-0.00726626	0.466285
SIGMA	0.729943	0.0493229	0.6394	0.833308

Log likelihood = -1084.48

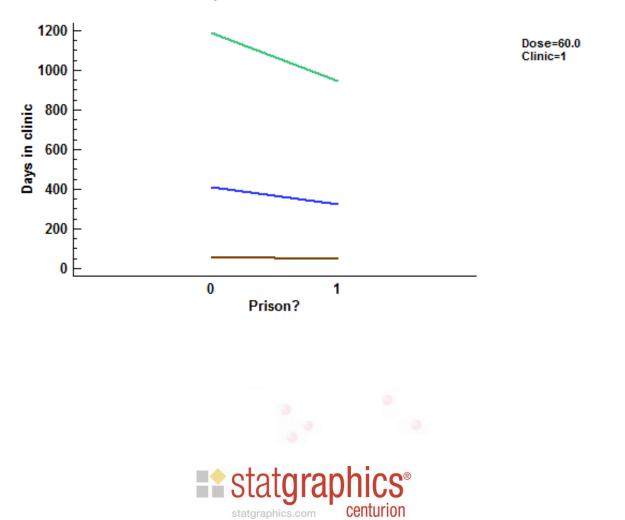
Likelihood Ratio Tests

Factor	Chi-Square	Df	P-Value
Dose	28.5474	1	0.0000
Clinic	24.9152	1	0.0000
Prison?	3.54961	1	0.0596

Days in clinic = exp(5.29378 + 0.0244232*Dose - 0.709329*Clinic=1 + 0.229509*Prison?=0)

Percentile Plot

Plot of Fitted Model Weibull percentiles: 5%, 50%, 95%


Dose

Percentile Plot

Plot of Fitted Model Weibull percentiles: 5%, 50%, 95%

statgraphics.com

More Information

 Video, slides and sample data may be found at <u>www.statgraphics.com/webinars</u>.

