Regression Analysis Using Statgraphics Centurion

Neil W. Polhemus, CTO, StatPoint Technologies, Inc.

Copyright 2011 by StatPoint Technologies, Inc.

Web site: www.statgraphics.com

Outline

- Regression Models
- Examples Single X
 - Simple regression
 - Nonlinear models
 - Calibration
 - Comparison of regression lines
- Examples Multiple X
 - Regression model selection (stepwise, all possible)
 - Logistic regression
 - Poisson regression

Regression Model Setup

- Dependent variable: Y
- Independent variable(s): $X_1, X_2, ..., X_k$
- Error term: **ɛ**

Model:
$$Y = f(X_1, X_2, \dots, X_k) + \varepsilon$$

Types of Regression Models (#1)

Procedure	Dependent variable	Independent variables
Simple Regression	continuous	1 continuous
Polynomial Regression	continuous	1 continuous
Box-Cox Transformations	continuous	1 continuous
Calibration Models	continuous	1 continuous
Comparison of Regression Lines	continuous	1 continuous and 1 categorical

Types of Regression Models (#2)

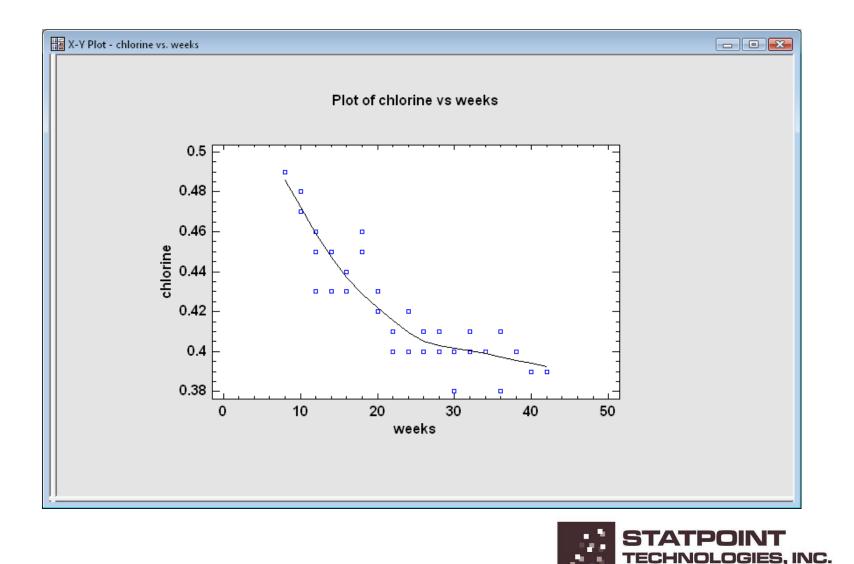
Procedure	Dependent variable	Independent variables
Multiple Regression	continuous	2+ continuous
Regression Model Selection	continuous	2+ continuous
Nonlinear Regression	continuous	1+ continuous
Ridge Regression	continuous	2+ continuous
Partial Least Squares	continuous	2+ continuous
General Linear Models	1+ continuous	2+ continuous or categorical variables

Types of Regression Models (#3)

Procedure	Dependent variable	Independent variables
Logistic Regression	proportions	1+ continuous or categorical
Probit Analysis	proportions	1+ continuous or categorical
Poisson Regression	counts	1+ continuous or categorical
Negative Binomial Regression	counts	1+ continuous or categorical
Life Data - Parametric Models	failure times	1+ continuous or categorical

Example 1: Stability study

C:\DocD	ata16\nonlin.sgd	
	weeks	chlorine 🔺
	weeks since production	percent available
1	8	0.49
2	8	0.49
3	10	0.48
4	10	0.47
5	10	0.48
6	10	0.47
7	12	0.46
8	12	0.46
9	12	0.45
10	12	0.43
11	14	0.45
12	14	0.43
13	14	0.43
14	16	0.44
15	16	0.43
16	16	0.43
17	18	0.46
18	18	0.45
19	20	0.42
	nonlin B C	


Y: percent of available chlorine

X: number of weeks since production

Lower acceptable limit for Y: 0.40

X-Y Scatterplot with Smooth

Simple Regression

Simple Regression	
weeks chlorine	Y: Chlorine
	X: weeks
	(Select:)
🔲 Sort column names	
OK Cancel	Delete Transform Help

Analysis Options

Simple Regression Options			x
Type of Model			
 Linear Square Root-Y Exponential Reciprocal-Y Squared-Y Square Root-X Double Square Root-X Log-Y Square Root-X 	 Squared-Y Square Root-X Logarithmic-X Square Root-Y Log-X Multiplicative Reciprocal-Y Log-X Squared-Y Log-X Reciprocal-X Square Root-Y Reciprocal-X 	 Double Reciprocal Squared-Y Reciprocal-X Squared-X Square Root-Y Squared-X Log-Y Squared-X Reciprocal-Y Squared-X Double Squared Logistic 	
C Reciprocal-Y Square Root-X	C S-Curve C Log Probit Alternative Fit None (least squares only)		
Include constant			
OK	Cancel	Help	

Tables and Graphs

Tables and Graphs		—
TABLES ✓ Analysis Summary ✓ Lack-of-Fit Test Forecasts	GRAPHS ✓ Plot of Fitted Model ✓ Observed versus Predicted ✓ Residuals versus X	OK Cancel All
 Forecasts Comparison of Alternative Models Unusual Residuals 	 Residuals versus A Residuals versus Predicted Residuals versus Row Number 	Store Help
Influential Points		

Analysis Window

Simple Regression - chlorin	e vs. weeks			
Simple Regression - chl Dependent variable: chlorine (Independent variable: weeks (Linear model: Y = a + b*X	percent available)	n)		Plot of Fitted Model chlorine = 0.48551 - 0.00271679*weeks
Least Squares Parameter Estimate Analysis of Variance with La Source Sum of Squa Model 0.0295587 Residual 0.00994133 Lack-of-Fit 0.00757467 Pure Error 0.00236667 Total (Corr.) 0.0395	ck-of Fit res Df Mean Squ 1 0.0295387 42 0.0002366 16 0.0004734 26 0.0000910 43	124.88 0.0000 98 10 117 5.20 0.0001		0.43 0.46 0.42 0.5 0.
Comparison of Alternative M Model Squared-Y reciprocal-X Reciprocal-X Square root-Y reciprocal-X S-curve model Double reciprocal Reciprocal-Y logarithmic-X	Correlation R.J. 0.9367 87. 0.9333 87. 0.9312 86. 0.9288 86. -0.9233 85.	Squared 75% 11% 71% 27% 25% 99%	-	Residual Piot chlorine = 0.48551 - 0.0027 1675*weeks
	standard deviations ea	which have Studentized residue		Provide a second

Analysis Summary

	Simple	Regression -	chlorine v	rs. weeks
--	--------	--------------	------------	-----------

Simple Regression - chlorine vs. weeks

Dependent variable: chlorine (percent available) Independent variable: weeks (weeks since production) Linear model: Y = a + b*X

Coefficients

	Least Squares	Standard	Т	
Parameter	Estimate	Error	Statistic	P-Value
Intercept	0.48551	0.00589066	82.4204	0.0000
Slope	-0.00271679	0.000243115	-11.1749	0.0000

Analysis of Variance

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Model	0.0295587	1	0.0295587	124.88	0.0000
Residual	0.00994133	42	0.000236698		
Total (Corr.)	0.0395	43			

Correlation Coefficient = -0.865055 R-squared = 74.8321 percent R-squared (adjusted for d.f.) = 74.2328 percent Standard Error of Est. = 0.015385 Mean absolute error = 0.012834 Durbin-Watson statistic = 0.992081 (P=0.0001) Lag 1 residual autocorrelation = 0.451981

The StatAdvisor

The output shows the results of fitting a linear model to describe the relationship between chlorine and weeks. The equation of the fittee model is

chlorine = 0.48551 - 0.00271679*weeks

Since the P-value in the ANOVA table is less than 0.05, there is a statistically significant relationship between chlorine and weeks at the 95.0% confidence level.

Lack-of-Fit Test

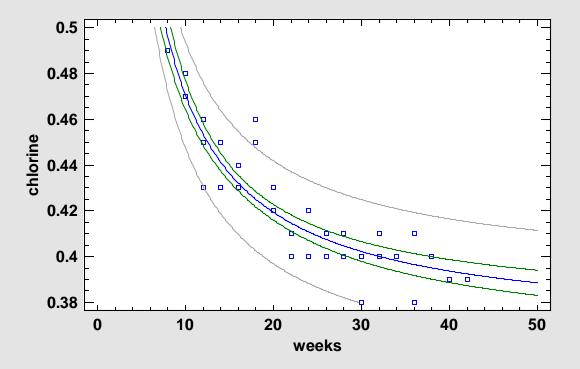
Simple Regression - chlorine vs. weeks

Analysis of Variance with Lack-of-Fit						
Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value	
Model	0.0295587	1	0.0295587	124.88	0.0000	
Residual	0.00994133	42	0.000236698			
Lack-of-Fit	0.00757467	16	0.000473417	5.20	0.0001	
Pure Error	0.00236667	26	0.0000910256			
Total (Corr.)	0.0395	43				

The StatAdvisor

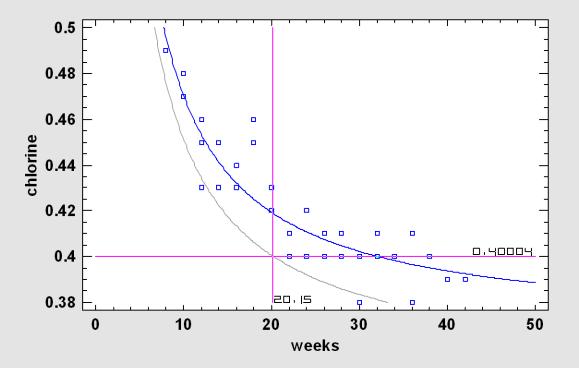
The lack of fit test is designed to determine whether the selected model is adequate to describe the observed data, or whether a more complicated model should be used. The test is performed by comparing the variability of the current model residuals to the variability between observations at replicate values of the independent variable X. Since the P-value for lack-of-fit in the ANOVA table is less than 0.05, there is statistically significant lack-of-fit at the 95.0% confidence level. You might consider selecting a different model form from the Analysis Options dialog box.

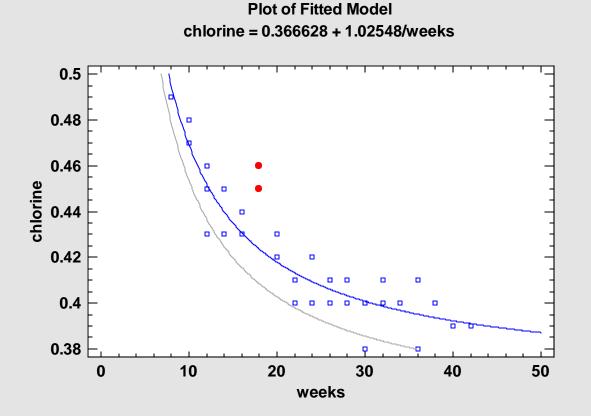
111


Comparison of Alternative Models

omparison of Alternative Mod	els	
Model	Correlation	R-Squared
Squared-Y reciprocal-X	0.9367	87.75%
Reciprocal-X	0.9333	87.11%
Square root-Y reciprocal-X	0.9312	86.71%
5-curve model	0.9288	86.27%
Double reciprocal	-0.9233	85.25%
Reciprocal-Y logarithmic-X	0.9219	84.99%
Multiplicative	-0.9218	84.98%
.ogarithmic-X	-0.9207	84.77%
Squared-Y logarithmic-X	-0.9185	84.36%
Reciprocal-Y square root-X	0.9038	81.69%
.ogarithmic-Y square root-X	-0.9012	81.21%
Square root-X	-0.8974	80.54%
Squared-Y square root-X	-0.8926	79.68%
Reciprocal-Y	0.8759	76.73%
Ixponential	-0.8710	75.87%
Square root-Y	-0.8682	75.37%
ogistic	-0.8665	75.08%
.og probit	-0.8662	75.03%
inear	-0.8651	74.83%
Squared-Y	-0.8581	73.63%
Reciprocal-Y squared-X	0.8023	64.37%
.ogarithmic-Y squared-X	-0.7941	63.05%
Square root-Y squared-X	-0.7896	62.34%
Squared-X	-0.7849	61.60%
Double squared	-0.7748	60.04%
Double square root Square root-Y logarithmic-X	<no fit=""></no>	

Fitted Reciprocal-X Model


Plot of Fitted Model chlorine = 0.368053 + 1.02553/weeks


Lower 95% Prediction Limit

Plot of Fitted Model chlorine = 0.368053 + 1.02553/weeks

Outlier Removal

Example 2: Nonlinear Regression

Draper and Smith in <u>Applied Regression Analysis</u> suggest fitting a model of the form

Y = a + (0.49-a)exp[-b(x-8)]

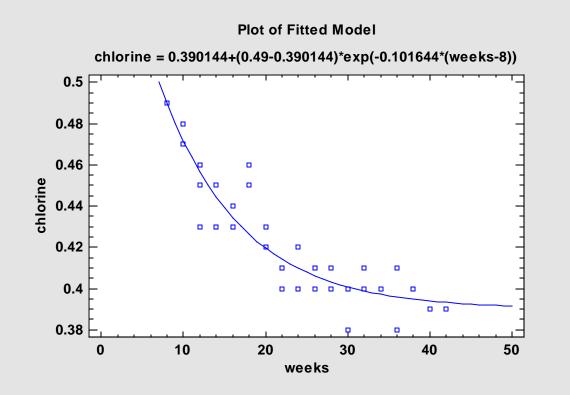
Since the model is nonlinear in the parameters, it requires a search procedure to find the best solution.

Data Input Dialog Box

Nonlinear Regression	
weeks	Dependent Variable:
chlorine	chlorine
	Function:
	a+(0.49-a)*exp(-b*(weeks-8))
	(Weights:)
	(Select:)
Sort column names	· · · · · · · · · · · · · · · · · · ·
OK Cancel	Delete Transform Help

Initial Parameter Estimates

Initial Parameter Estimates		X
a:		ОК
0.1		Cancel
b: 0.1		Help



Analysis Options

Nonlinear Regression Options		X
Estimation Stopping Criterion 1: 0.00001	Method Marquardt Gauss-Newton Steepest Descent	OK Cancel Help
Stopping Criterion 2: 0.0001 Maximum Iterations: 30	Marquardt Parameter Initial Value: 0.01	
Maximum Function Calls: 200 Confidence Level: 95.0	Scaling Factor: 20.0 Maximum Value: 120.0	

Plot of Fitted Model

Example 3: Calibration

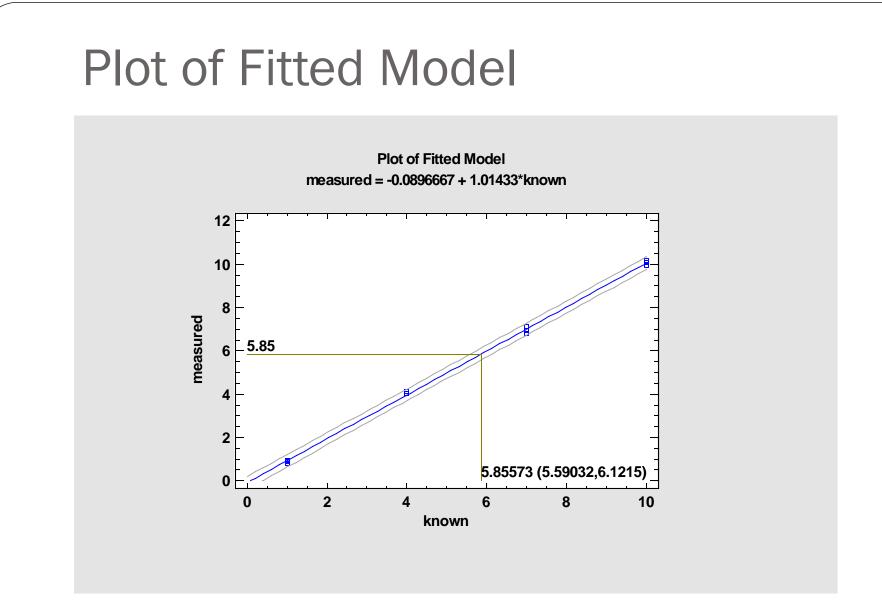
🛄 calibrati	on.sgd	
	known	measured 🔺
4		
1	1	0.82
2	1	0.95
3	1	0.87
4	4	4.14
5	4	4.04
6	4	4.01
7	7	7.13
8	7	6.92
9	7	6.81
10	10	9.95
11	10	10.15
12	10	10.08
	calibration B 0	

The general calibration problem is that of determining the likely value of X given an observed value of Y.

Typically: X = item characteristic, Y = measured value

Step 1: Build a regression model using samples with known values of X ("golden samples").

Step 2: For another sample with unknown X, predict X from Y.


ES, INC.

Data Input Dialog Box

Calibration Models	
known measured	Y (Measured): X (Actual): Known (Fitted Model Statistics:) (Weights:) (Select:)
, Sort column names	Action Fit New Model Predict X from Y
OK Cancel	Delete Transform Help

Reverse Prediction

Plot of Fitted Model Options		
Include Prediction Limits Confidence Limits Confidence Level: 95.0	Predict O Y • X At: 5.85	OK Cancel Help
,	Mean Size or Weight: 1.0	

Example 4: Comparison of Regression Lines

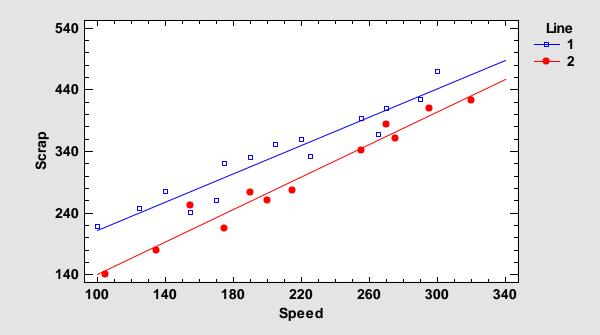
C:\DocD	ata16\soap.sgd		
	Line	Scrap	Speed 🔺
▲			
1	1	218	100
2	1	248	125
3	1	360	220
4	1	351	205
5	1	470	300
6	1	394	255
7	1	332	225
8	1	321	175
9	1	410	270
10	1	260	170
11	1	241	155
12	1	331	190
13	1	275	140
14	1	425	290
15	1	367	265
16	2	140	105
17	2	277	215
	soap B C	100	

Y: amount of scrap produced

X: production line speed

Levels: line number

Data Input Dialog Box


Comparison of Regression Lines	
Line Scrap Speed	Dependent Variable: Scrap Independent Variable: Speed Level Codes: (Select:) (Select:)
Sort column names	
OK Cancel	Delete Transform Help

Analysis Options

Comparison of Regression Lines Options	X
Assume Equal Intercepts	ОК
Assume Equal Slopes	Cancel
	Help

Plot of Fitted Model

Significance Tests

🔚 Comparison of Regression Lines - Scrap vs. Speed

Further ANOVA for Variables in the Order Fitted					
Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Speed	149661.	1	149661.	347.55	0.0000
Intercepts	18694.1	1	18694.1	43.41	0.0000
Slopes	809.623	1	809.623	1.88	0.1835
Model	169165.	3			

111

The StatAdvisor

٠

This table allows you to test the statistical significance of the terms in the model. Because the P-value for the slopes is greater than or equal to 0.1, there are not statistically significant differences among the slopes for the various values of Line at the 90% or higher confidence level. You can force equal slopes by setting the appropriate checkbox on the Analysis Options dialog box. Because the P-value for the intercepts is less than 0.01, there are statistically significant differences among the slopes among the intercepts for the various values of Line at the 90% of Line 100% of

Parallel Slope Model

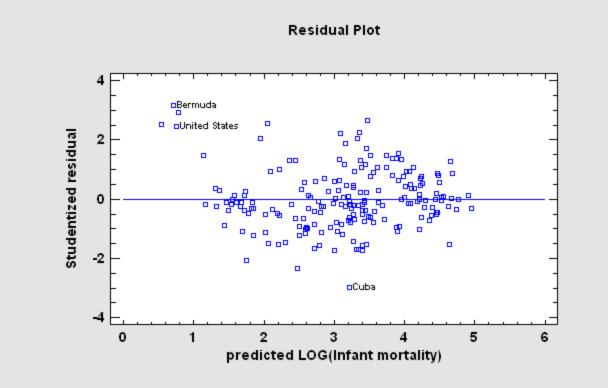
ſ	🔚 Comparison of Regression Lines - Scrap vs. Speed 💼 📼
	MPE -0.576408
	The StatAdvisor The output shows the results of fitting a linear regression model to describe the relationship between Scrap, Speed and Line. The equation of the fitted model is
	Scrap = 80.411 + 1.23074*Speed - 53.1292*(Line=2)
	where the terms similar to Line=2 are indicator variables which take the value 1 if true and 0 if false. This corresponds to 2 parallel lines. For example, when Line=1, the model reduces to
	Scrap = 80.411 + 1.23074*Speed
	When Line=2, the model reduces to
	Scrap = 27.2818 + 1.23074*Speed
	Because the P-value in the ANOVA table is less than 0.05, there is a statistically significant relationship between the variables at the 95.0% confidence level.
	The R-Squared statistic indicates that the model as fitted explains 94.017% of the variability in Scrap. The adjusted R-Squared statistic, which is more suitable for comparing models with different numbers of independent variables, is 93.5184%. The standard error of the estimate shows the standard deviation of the residuals to be 21.1283. This value can be used to construct prediction limits for new observations by selecting the Forecasts option from the text menu. The mean absolute error (MAE) of 17.0936 is the average value of the residuals. The Durbin-Watson (DW) statistic tests the residuals to determine if there is any significant correlation based on the order in which they occur in your data file. Since the P-value is greater than 0.05, there is no indication of serial autocorrelation in the residuals a the 95.0% confidence level. To test for statistically significant differences between the intercepts and/or slopes, select Conditional Sum of Squares from the list of Tabular Options.
	۲

Example 5: Multiple Regression

	Country	Region	Population	Area	Pop. Density	Coastline	Net migration	Infant mortality	
				sq. mi.	per sq. mi.	coast/area ratio		per 1000 births	\$
1	Afghanistan	ASIA (EX. NEAR	31056997	647500	48.0	0.00	23.06	163.07	700
2	Albania	EASTERN EUROPE	3581655	28748	124.6	1.26	-4.93	21.52	450
3	Algeria	NORTHERN AFRICA	32930091	2381740	13.8	0.04	-0.39	31	600
4	American Samoa	OCEANIA	57794	199	290.4	58.29	-20.71	9.27	800
5	Andorra	WESTERN EUROPE	71201	468	152.1	0.00	6.6	4.05	190
6	Angola	SUB-SAHARAN AFF	12127071	1246700	9.7	0.13	0	191.19	190
7	Anguilla	LATIN AMER. & C	13477	102	132.1	59.80	10.76	21.03	860
8	Antigua & Barbu	LATIN AMER. & C	69108	443	156.0	34.54	-6.15	19.46	110
9	Argentina	LATIN AMER. & C	39921833	2766890	14.4	0.18	0.61	15.18	112
10	Armenia	C.W. OF IND. ST	2976372	29800	99.9	0.00	-6.47	23.28	350
11	Aruba	LATIN AMER. & C	71891	193	372.5	35.49	0	5.89	280
12	Australia	OCEANIA	20264082	7686850	2.6	0.34	3.98	4.69	290
13	Austria	WESTERN EUROPE	8192880	83870	97.7	0.00	2	4.66	30
14	Azerbaijan	C.W. OF IND. ST	7961619	86600	91.9	0.00	-4.9	81.74	340
15	Bahamas, The	LATIN AMER. & C	303770	13940	21.8	25.41	-2.2	25.21	161
16	Bahrain	NEAR EAST	698585	665	1050.5	24.21	1.05	17.27	169
17	Bangladesh	ASIA (EX. NEAR	147365352	144000	1023.4	0.40	-0.71	62.6	190
18	Barbados	LATIN AMER. & C	279912	431	649.5	22.51	-0.31	12.5	151
19	Belarus	C.W. OF IND. ST	10293011	207600	49.6	0.00	2.54	13.37	610
20	Belaium	WESTERN EUROPE	10379067	30528	340.0	0.22	1.23	4.68	291

Stepwise Regression

Multiple Regression							
Country Region Population Area Pop. Density Coastline Net migration Infant mortality GDP Literacy Phones Arable Crops Other Climate Birthrate Deathrate Agriculture Industry Service	Dependent Variable: LOG(Infant mortality) Independent Variables: Independent Variables: Population Pop. Density Coastline Net migration GDP Literacy Phones Arable Service (Select:) (veights:)						
Sort column names							
OK Cancel	Delete Transform Help						


Analysis Options

Multiple Regression Options										
 Fitting Procedure Ordinary Least Squares Forward Stepwise Selection Backward Stepwise Selection Box-Cox Optimization Cochrane-Orcutt Optimization 	Transformations Power: 1.0 Addend: 0 Autocorrelation: 0	OK Cancel Help								
Constant in Model Constant in Model C F-Ratio P-Value Max. Steps: 50	Criterion F-to-Enter:	F-to-Remove: 4.0 P-to-Remove: 0.05								

Selected Variables

the second se	gression - LOG able: LOG(Infant m	and the second		ity)				
Independent va			, ,					
Population								
	(per sq. mi.)							
Net migration	oast/area ratio)							
GDP (\$ per c								
Literacy (%)	apira)							
Phones (per	1000)							
Arable (%)	-							
Service								
		Stand	ard	T				
Parameter	Estimate	Error		Statis	fic	P-Vo	ılue	
CONSTANT	5.64417	0.1902	74	29.663	33	0.000)0	
Pop. Density	-0.0000565532	0.0000	269381	-2.099	38	0.037	71	
GDP	-0.0000360212	0.0000	0671047	-5.367	91	0.000		
Literacy	-0.0169067	0.0022	0324	-7.673	57	0.000)0	
Phones	-0.00136663	0.0003	77819	-3.617	16	0.000)4	
Service	-0.835767	0.2903	56	-2.878	42	0.004	45	
Analysis of Va	ianaa							
Source	Sum of Squares	Df	Mean Sq	uare	F-R	atio	P-Value	
Model	184.793	5	36.9586		161.	64	0.0000	
Residual	43.2136	189	0.228643					
Total (Corr.)	228.007	194						
R-squared = 81.	0472 percent							
R-empered (edi	sted for d.f.) = 80.5	5 <mark>458</mark> per	cent					
	of Est. = 0.478167							

Residual Plot

All Possible Regressions

Regression Model Selection		×
Country Region Population Area Pop. Density Coastline Net migration	Dependent Variable: LOG(Infant mortality) Independent Variables:	
Infant mortality GDP Literacy Phones Arable Crops Other Climate Birthrate Deathrate Agriculture Industry	Population Pop. Density Coastline Net migration GDP Literacy Phones Arable Service	4 >
Service	(Select:) (Weights:)	
Sort column hames		
OK Cancel	Delete Transform Help	

Analysis Options

Regression M	odel Selection Optio	ns 🔀
Number of V	ariables in Model	ОК
Minimum:	Maximum:	Cancel
	JA	Help

Best Adjusted R-Squared Models

lodels wit	h Largest Adju		ed		1
		Adjusted		Included	
MSE	R-Squared	R-Squared	Ср	Variables	
0.226749	81.5026	80.707	8.32473	BCDEFGHI	
0.227047	81.3787	80.6817	7.5658	BCDEFGI	
0.227451	81.3456	80.6473	7.89802	BDEFGHI	
0.227575	81.535	80.6367	10.0	ABCDEFGHI]
0.227801	81.217	80.6175	7.1867	BEFGHI]
0.228052	81.2963	80.5961	8.39225	BCEFGHI]
D.22811	81.3916	80.5912	9.43714	ABCDEFGI]
0.228183	81.1854	80.585	7.50245	BDEFGI]
D.228313	81.375	80.5739	9.60329	ABDEFGHI]
0.228602	81.151	80.5494	7.84795	BCEFGI	1
0.228616	81.2501	80.5482	8.85496	ABEFGHI]
0.228643	81.0472	80.5458	6.88724	BEFGI	1
D.228835	81.3324	80.5295	10.0301	ABCEFGHI]
0.229294	81.1944	80.4905	9.41259	ABDEFGI	1
0.22973	81.0579	80.4533	8.78056	ABEFGI	1
0.232373	80.7381	80.2285	9.9849	EFGHI]
0.23263	80.8188	80.2066	11.176	DEFGHI]
0.232744	80.6053	80.197	9.31532	EFGI]
0.232901	80.6943	80.1835	10.4235	DEFGI]
0.233352	80.6569	80.1452	10.7976	CEFGI]
0.233852	80.6154	80.1026	11.2133	AEFGI]
0.233889	80.9202	80.0995	14.1604	ACDEFGHI]

Example 6: Logistic Regression

Response variable may be in the form of proportions or binary (0/1).

failures.	sgd			23	iii birthwei	ght.sgd				_ 0 Σ	3
	Load	Specimens	Failures			Low birth weight	Age	Weight	Smoker	Doctor visits	2
						0=No,1=Yes			1=Yes	first trimester	
					121	0	20	158	0	1	
1	5	600	13		122	0	26	160	0	0	
2	35	500	95		123	0	21	115	0	1	
3	70	600	189		124	0	22	129	0	0	
4	80	300	95		125	0	25	130	0	2	
					126	0	31	120	0	2	
5	90	300	130		127	0	35	170	0	1	
6					128	0	19	120	1	0	
7					129	0	24	116	0	1	
					130	0	45	123	0	1	
8					131	1	28	120	1	0	
9					132	1	29	130	0	2	
10					133	1	34	187	1	0	
11					134	1	25	105	0	0	f
					135	1	25	85	0	0	
12				-	136	1	27	150	0	0	
	failures B C				137	1	23	97	0	1	
					138	1	24	128	0	1	
					139	1	24	132	0	0	l

140 1 birthweight B C 21

165

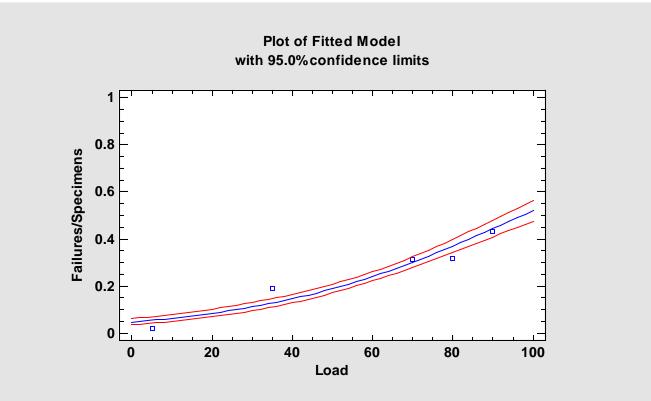
►

Logistic Model

Let P(Event) be the probability an event occurs at specified values of the independent variables X.

$$P(Event) = \frac{1}{1 + \exp\left[-(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k)\right]}$$
(1)

$$\log\left(\frac{P(Event)}{1 - P(Event)}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k$$
(2)


Data Input - Proportions

Logistic Regression	
Load Specimens Failures	Dependent Variable: Failures/Specimens (Sample Sizes:) Specimens
	Quantitative Factors:
	Load
	Categorical Factors:
	(Select:)
Sort column names	
OK Cancel	Delete Transform Help

Analysis Options

Logistic Regression Options			X
Method Maximum Likelihood Weighted Least Squares Smallest Proportion: 0.5 /n Model First Order Second Order	Fit All Variable Forward Set Backward P-to-Enter: 0.05 Max. Steps: 50	election	OK Cancel Exclude Help
Include Constant	C Final Model C All Steps	l Only	

Plot of Fitted Model

Statistical Results

📲 Logistic Re	gression - Failu	ures/S	pecimen	;	- 0 <mark>×</mark>
Logistic Re	gression - F	ailu	res/Spe	cimens	*
	riable: Failures				
Sample sizes: 3	Specimens	-			
Factors:					
Load					
Estimated Reg	ression Model	l (Ma	ximum Li	kelihood)	=
			ndard	Estimated	
Parameter	Estimate	Err	or	Odds Ratio	
CONSTANT	-2.9949	0.1	45939		
Load	0.0307699	0.0	0209432	1.03125	
Analysis of D Source Model	eviance Deviance 283.056	Df 1	P-Value 0.0000		
Residual	36.2181	3	0.0000		
Total (corr.)	319.274	4	0.0000		
	517.274	4			
	deviance expla entage = 87.40 ntio Tests		by model	= 88.6561	
Factor Ch	i-Square Df	P_{-}	Value	7	
Load 283	.056 1	0.0	000]	
•					
		_			

Data Input - Binary

Logistic Regression	×
Low birth weight Age Weight Smoker	Dependent Variable:
Doctor visits	(Sample Sizes:) Quantitative Factors:
	Age Weight Smoker Doctor visits
	Categorical Factors:
	(Select:)
Sort column names	
OK Cancel	Delete Transform Help

Analysis Options

Logistic Regression Options			X
Method Maximum Likelihood Weighted Least Squares Smallest Proportion: /n Model First Order Second Order	Fit All Variable Forward Set Forward Set P-to-Enter: 0.05 Max. Steps: 50	election	OK Cancel Exclude Help
Include Constant	Display C Final Model I All Steps	l Only	

Analysis Summary

Logiane 1	Regr	ession -	Lo	w bi	irth weig	ght	
Dependent [.]	varial	ble: Low bi	irth	weig	;ht (0=No,	, 1=Yes)	
Factors:							
Age							
Weight Smoker							
Doctor vis	sits						=
	5105						
Estimated R	Regre	ssion Mod	el (l	Maxi	imum Lik	elihood)	
				Star	ndard	Estimated	
Parameter		Estimate		Erre	or	Odds Ratio	
CONSTAN	٩T	0.621997		0.79	95914		
TTT - 4 -		-0.0133243	2	10.00	608955	0.986764	
Weight		-0.015524.	·	0.00	0000755		
Weight Smoker		0.676673			4698	1.96732	
Smoker		0.676673					
Smoker Analysis of		0.676673 ансе		0.32	4698	1.96732	
Smoker Analysis of Source		0.676673 ance Deviance		0.32	P-Value	1.96732	
Smoker Analysis of <i>Source</i> Model		0.676673 ance Deviance 10.3313	 	0.32 J	24698 P-Value 0.0057	1.96732	
Smoker Analysis of Source Model Residual		0.676673 ance Deviance 10.3313 224.341	L 2 13	0.32)) 86	P-Value	1.96732	
Smoker Analysis of <i>Source</i> Model		0.676673 ance Deviance 10.3313	L 2 13	0.32 J	24698 P-Value 0.0057	1.96732	
Smoker Analysis of Source Model Residual Total (corr.	, ; ;) ;	0.676673 ance Deviance 10.3313 224.341 234.672	L 2 13 13	0.32)f 86 88	P-Value 0.0057 0.0287	1.96732	
Smoker Analysis of Source Model Residual	(.)	0.676673 ance Deviance 10.3313 224.341 234.672 viance exp	2 13 13 13	0.32)f 86 88	P-Value 0.0057 0.0287	1.96732	
Smoker Analysis of Source Model Residual Total (corr. Percentage Adjusted pe	(.)	0.676673 ance <i>Deviance</i> 10.3313 224.341 234.672 viance exp tage = 1.84	2 13 13 13	0.32)f 86 88	P-Value 0.0057 0.0287	1.96732	
Smoker Source Model Residual Total (corr. Percentage Adjusted po	of de ercent	0.676673 ance <i>Deviance</i> 10.3313 224.341 234.672 viance exp tage = 1.84 Tests	L 2 1: 1: 1: 1: 1: 1: 57	0.32)7 86 88 .ed b:	P-Value 0.0057 0.0287 y model =	1.96732	
Smoker Analysis of Source Model Residual Total (corr. Percentage Adjusted percentage Likelihood Factor	of de ercent Ratio	0.676673 ance <i>Deviance</i> 10.3313 224.341 234.672 viance exp tage = 1.84) Tests <i>Square</i> 1	1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1	0.32 9 86 88 .ed by	P-Value 0.0057 0.0287 y model =	1.96732	
Smoker Source Model Residual Total (corr. Percentage Adjusted percentage Likelihood Factor Weight	of de ercent	0.676673 ance Deviance 10.3313 224.341 234.672 viance exp tage = 1.84 Square 1 95 1	1 2 1 1 1 3 1 3 7	0.32 9 86 88 ed b: 0.0	P-Value 0.0057 0.0287 y model =	1.96732	

Example 7: Poisson Regression

Response variable is a count.

	Injuries	Thickness	Extraction	Height	Years
	per subregion	inner burden (feet)	percent of previous seam	lower seam (feet)	since mine opened
1	2	50	70	52	1
2	1	230	65	42	6
3	0	125	70	45	1
4	4	75	65	68	0.5
5	1	70	65	53	0.5
6	2	65	70	46	3
7	0	65	60	62	1
8	0	350	60	54	0.5
9	4	350	90	54	0.5
10	4	160	80	38	0
11	1	145	65	38	10
12	4	145	85	38	0
13	1	180	70	42	2
14	5	43	80	40	0
15	2	42	85	51	12
16	5	42	85	51	0
17	5	45	85	42	0
18	5	83	85	48	10

Poisson Model

Values of the response variable are assumed to follow a Poisson distribution:

$$p(Y) = \frac{\lambda^Y e^{-\lambda}}{Y!}$$

The rate parameter λ is related to the predictor variables through a loglinear link function:

$$\log(\lambda) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k$$

Data Input

Poisson Regression	×
Injuries Thickness Extraction Height Years	Dependent Variable: Injuries (Sample Sizes:) Quantitative Factors: Thickness
	Extraction Height Years Categorical Factors:
Sort column names	(Select:)
OK Cancel	Delete Transform Help

Analysis Options

Poisson Regression Options			— ×
Model First Order Second Order Include Constant	 Backward St P-to-Enter: 0.05 Max. Steps: 	 All Variables Forward Selection Backward Selection P-to-Enter: P-to-Remove: 0.05 	
	Display C Final Model C C All Steps	Inly	

Statistical Results

📲 Poisson Regression - Injuries

Poisson Regression - Injuries

Dependent variable: Injuries (per subregion) Factors:

Thickness (inner burden (feet))

Extraction (percent of previous seam)

Height (lower seam (feet))

Years (since mine opened)

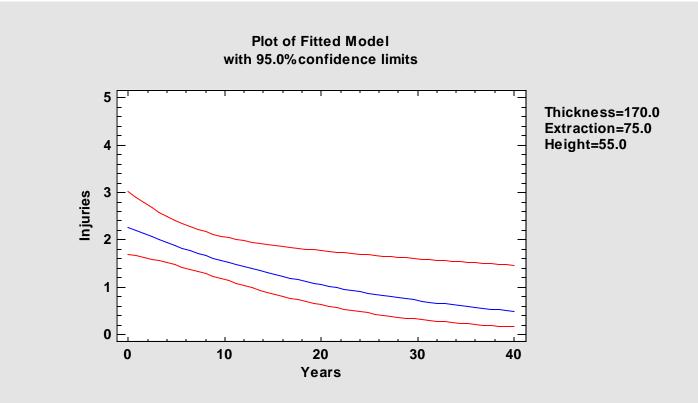
Estimated Regression Model (Maximum Likelihood)

		Standard	Estimated
Parameter	Estimate	Error	Rate Ratio
CONSTANT	-3.58943	0.944688	
Extraction	0.0587487	0.0116861	1.06051
Years	-0.0380213	0.0154547	0.962692

- 0

X

Analysis of Deviance


_				
	Source	Deviance	Df	P-Value
	Model	33.3576	2	0.0000
	Residual	41.6261	41	0.4434
	Total (corr.)	74.9837	43	

Percentage of deviance explained by model = 44.4865 A djusted percentage = 36.4847

Likelihood Ratio Tests

Factor	Chi-Square	Df	P-Value
Extraction	30.4927	1	0.0000
Years	6.99411	1	0.0082

Plot of Fitted Model

References

- <u>Applied Logistic Regression (second edition)</u> Hosmer and Lemeshow, Wiley, 2000.
- <u>Applied Regression Analysis (third edition)</u> Draper and Smith, Wiley, 1998.
- <u>Applied Linear Statistical Models (fifth edition)</u> Kutner et al., McGraw-Hill, 2004.
- <u>Classical and Modern Regression with Applications</u> (second edition) Myers, Brookes-Cole, 1990.

More Information

Go to <u>www.statgraphics.com</u>

Or send e-mail to info@statgraphics.com

