statgraphics®

Constructing Statistical Tolerance Limits for Non-Normal Data

> Presented by Dr. Neil W. Polhemus

Statistical Tolerance Limits

Consider a sample of *n* observations taken from a continuous population.

 $\{X_1, X_2, ..., X_n\}$

 Statistical tolerance limits create an interval that bounds a specified percentage of the population at a given level of confidence.


(such as 99% of the population with 95% confidence)

 These intervals are often used to demonstrate compliance with a set of requirements or specification limits.

Example: Medical Devices

 Consider the following measurements of the diameter of a sample n = 100 of medical devices:

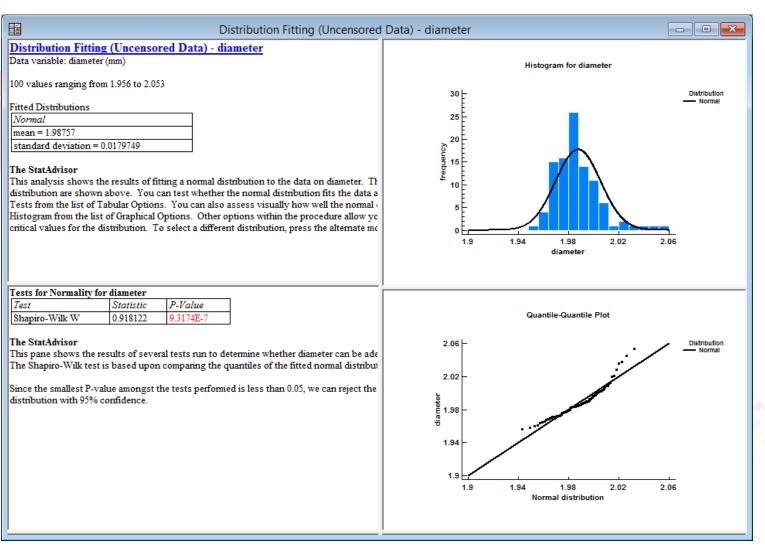
• The specification limits are 2.0 ± 0.1

Assuming Normality

If we could assume that the data are a random sample from a normal distribution, then a 95% statistical tolerance interval for 99% of the underlying population would be given by:

$$\overline{x} \pm Ks$$

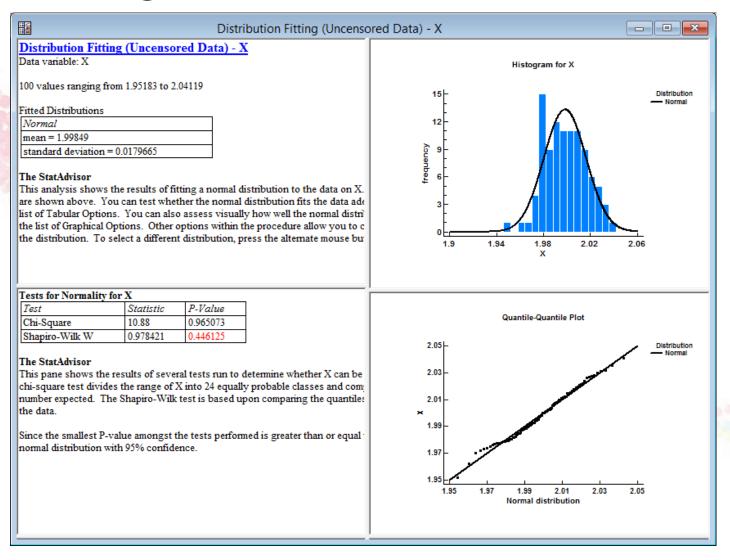
K depends on the level of confidence $100(1-\alpha)$ % and the percentage of the population P to be bound.



General Approach for Constructing Statistical Tolerance Limits

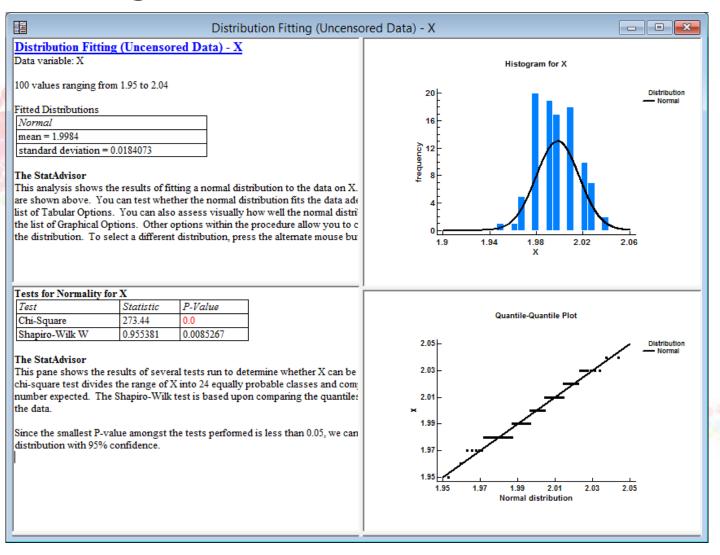
- Step 1: Test data for normality.
 - If normal dist. is tenable, calculate normal tolerance limits.
- Step 2: If not normal, search for a normalizing transformation.
 - If acceptable transformation is found, calculate normal tolerance limits for transformed data and invert the limits.
- Step 3: If transformation approach fails, try alternative distributions such lognormal, extreme value or Weibull.
 - If a good fit is found, calculate tolerance limits using that distribution.
- Step 4: If all else fails, calculate nonparametric tolerance limits.

Step 1: Test for Normality

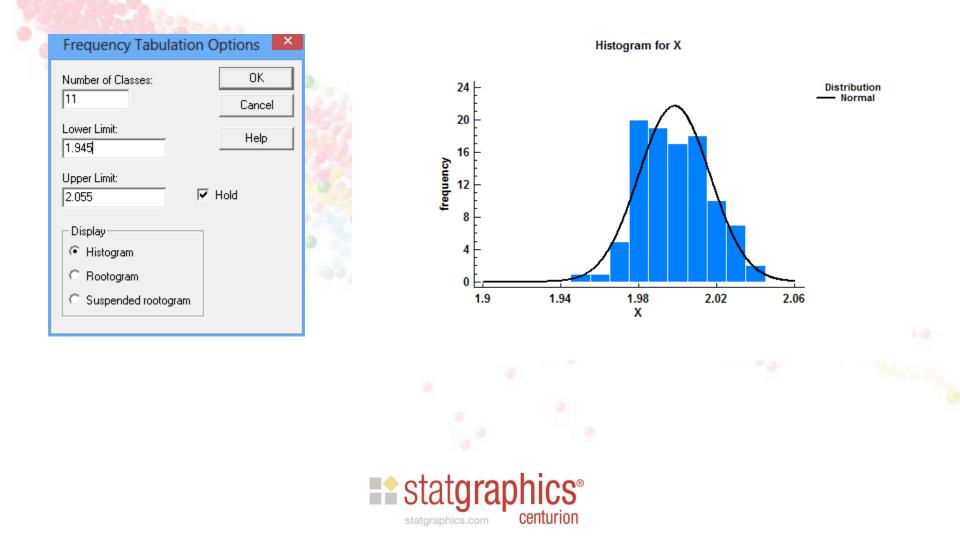


Tests for Normality

- Shapiro-Wilk test: recommended for sample sizes between 3 and 5000.
- Anderson-Darling test: recommended for sample sizes n > 5000.
- Chi-square test: recommended for heavily rounded data. NOTE: be sure to set up classes that match the rounding of the data.



Warning: Beware of rounded data


Warning: Beware of rounded data

Solution: bin the data

Be sure classes match the rounding

Run chi-square test

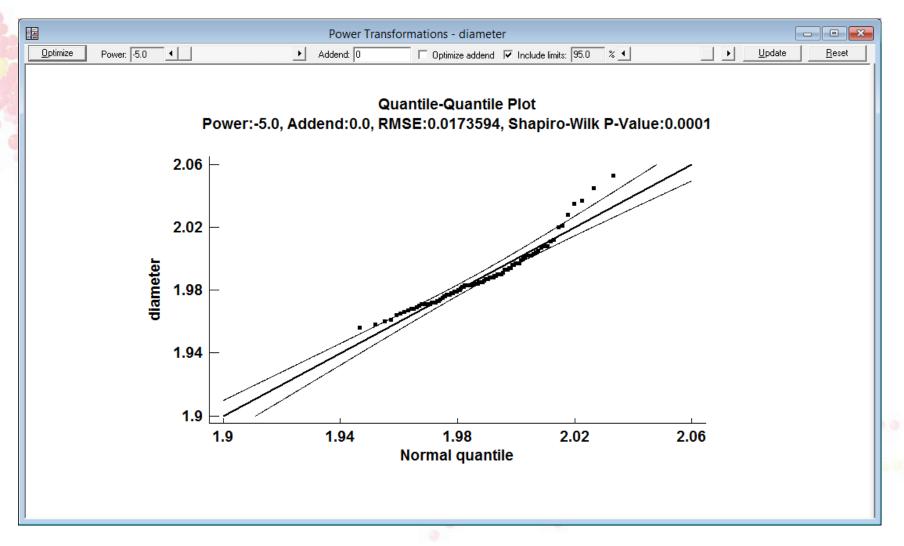
Calculate distribution-specific P-Values

Goodness-of-Fit Tests for X

Chi-Square Test

	Lower	Upper	Observed	Expected	
	Limit	Limit	Frequency	Frequency	Chi-Square
at or below		1.965	2	3.48	0.63
	1.965	1.975	5	6.70	0.43
	1.975	1.985	20	13.15	3.57
	1.985	1.995	19	19.34	0.01
	1.995	2.005	17	21.33	0.88
	2.005	2.015	18	17.64	0.01
	2.015	2.025	10	10.94	0.08
	2.025	2.035	7	5.08	0.72
above	2.035		2	2.34	0.05

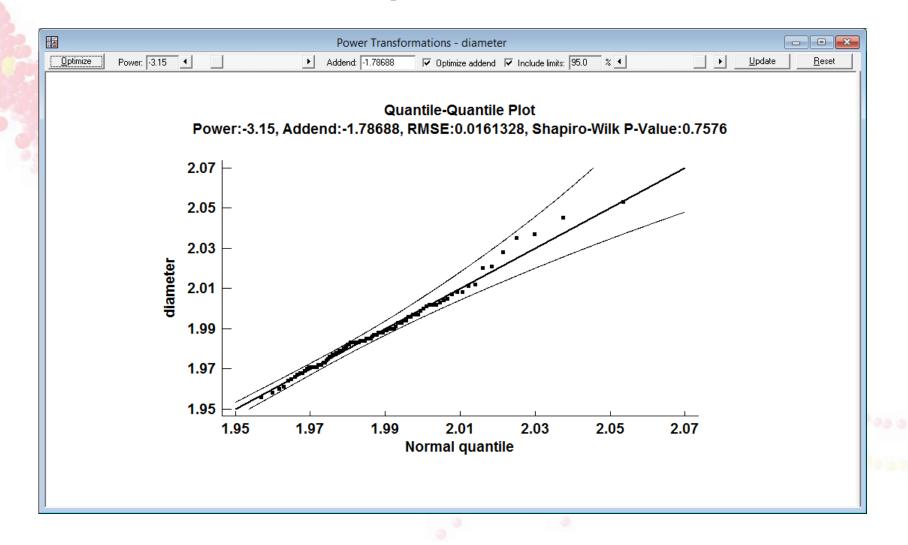
Chi-Square = 6.37593 with 6 d.f. P-Value = 0.382421



Step 2: Search for normalizing transformation

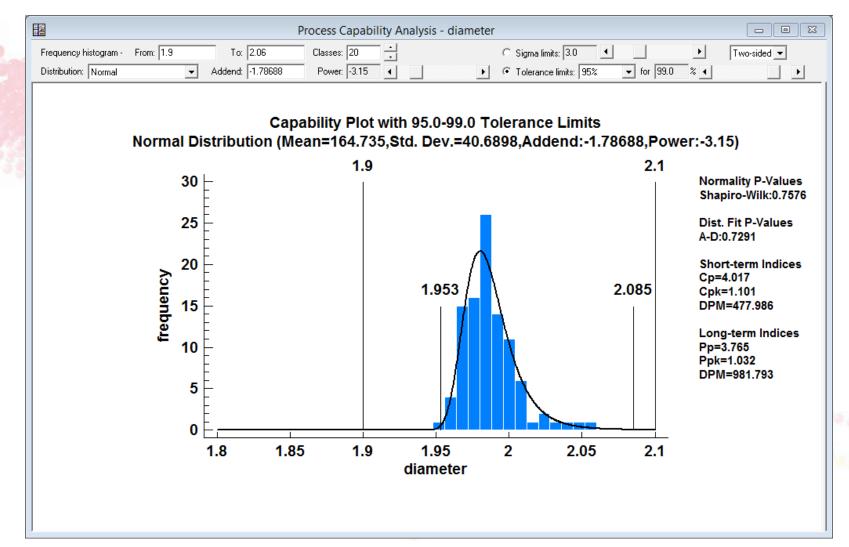
- If X does not follow a normal distribution, it may be possible to find a power p such that X^p is normally distributed.
- If so, normal tolerance limits may be constructed for X^p and then inverted to create limits for X.
- The general method of Box and Cox may be used to find the best value of p.

Statlets - Power Transformations


Power plus Addend

 If a simple power transformation does not work, an addend can be estimated as well:

$$X^t = (X + \Delta)^p$$



Power plus Addend

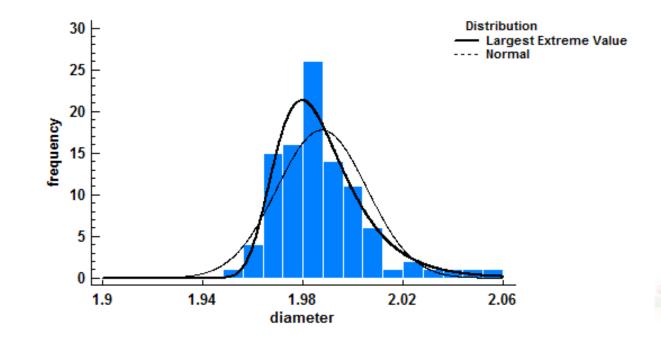
Tolerance Limits

Step 3: Find an Alternative Distribution

- Statgraphics will calculate statistical tolerance limits for the following distributions:
 - Normal
 - Lognormal
 - Weibull
 - Cauchy
 - Exponential
 - 2-parameter exponential
 - Gamma
 - Laplace
 - Largest extreme value
 - Pareto
 - Smallest extreme value

Distribution Fitting

Comparison of alternative distributions


Distribution	Est. Parameters	Log Likelihood	A^2
Largest Extreme Value	2	270.696	0.309344
Laplace	2	266.126	0.925591
Loglogistic	2	265.245	0.844609
Logistic	2	264.939	0.881328
Inverse Gaussian	2	261.022	1.83356
Lognormal	2	261.02	1.85076
Gamma	2	260.846	1.86193
Normal	2	260.484	1.93765
Cauchy	2	257.124	1.37669
Smallest Extreme Value	2	234.823	6.71728
Weibull	2	161.746	
Pareto	1	-131.127	44.7816
Exponential	1	-168.691	45.1176

Comparison of Alternative Distributions

Fitted Distributions

Histogram for diameter

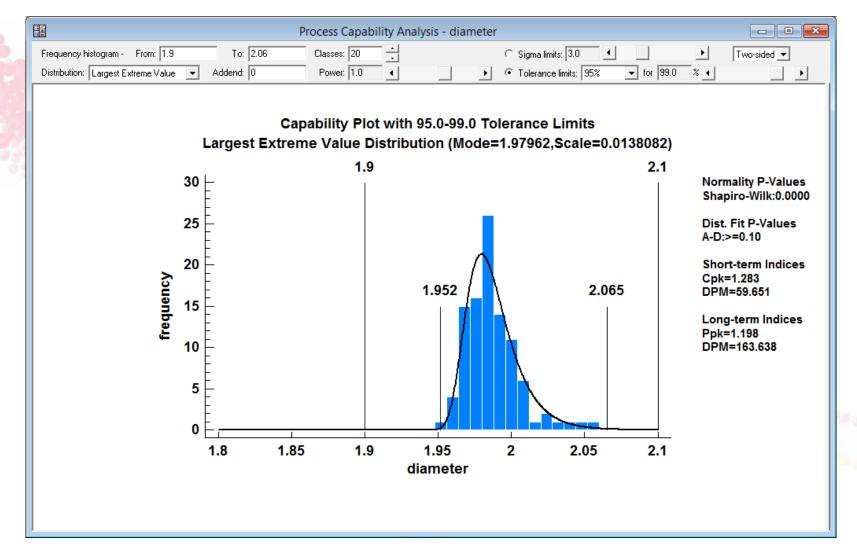
Goodness-of-Fit

- To test goodness-of-fit for alternative distributions, Anderson-Darling test is popular.
- Be sure to use "modified" form of the test, which adjusts the test statistics and P-value to account for estimated parameters.

Goodness-of-Fit Tests for diameter

Anderson-Darling A^2				
Largest Extreme Value		Normal		
A^2	0.309344	1.93765		
Modified Form	0.315531	1.95262		
P-Value	>=0.10*	0.0000564085*		

*Indicates that the P-Value has been compared to tables of critical values specially constructed for fitting the selected distribution. Other P-values are based on general tables and may be very conservative (except for the Chi-Square Test).



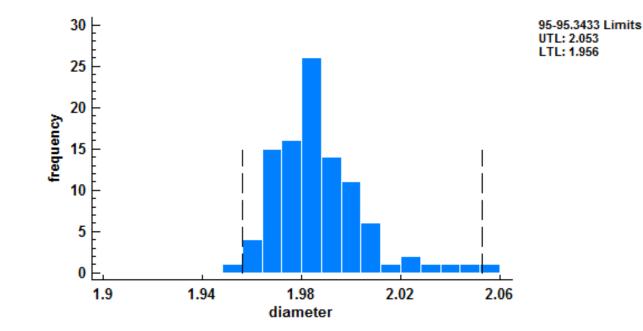
Tolerance Limits

© Normal	C Cauchy	Type of Limits	OK
C Lognormal	C Exponential	C Lower limit only	Cancel
C Weibull	 Exponential (2-parameter) 	C Upper limit only	Help
O Normal after transformation	🔿 Gamma		
Power: 1.0	C Laplace		Ilation Proportio
O Nonparametric (specified confidence)	C Largest extreme value	95.0 % 99.0	%
Interval Depth: 1	C Pareto	Threshold: Parel	to Threshold:
O Nonparametric (specified proportion)	O Smallest extreme value	0.0 1.0	

Tolerance Limits

Step 4: Nonparametric Limits

 Can specify either the population percentage or the confidence level, but not both.


	Statistical Tolerance Limits Optio	ns	×
Distribution C Normal	C Cauchy	Type of Limits	OK
C Lognormal	◯ Exponential	C Lower limit only	Cancel
C Weibull	C Exponential (2-parameter)	O Upper limit only	Help
O Normal after transformation	C Gamma		
Power: 1.0	C Laplace		pulation Proportion:
 Nonparametric (specified confidence) 	C Largest extreme value	8 95.0	^{1.0} %
Interval Depth: 1	C Pareto	Threshold: Pa	reto Threshold:
O Nonparametric (specified proportion)	C Smallest extreme value	0.0	0

• Tolerance interval is [X_(d), X_(n-d+1)]

Nonparametric Limits

Nonparametric Tolerance Limits

Sample Size Determination – Nonparametric Limits

 How large a sample is needed so that the range [min, max] forms a 95-99 tolerance interval?

Sample Si	ze Determination	- Statistical Tolerance Li	mits
Distribution			OK
C Normal Mean:	Sigma:		Cancel
50.0	10.0		Help
C Lognormal Mean: 50.0 C Weibull Shape: 5.0	Sigma: 10.0 Scale: 50.0	Threshold: 0.0 Threshold: 0.0	
 Nonparametric 	00.0	10.0	
Type of Limits Two-sided Lower limit only Upper limit only	Confidence Level 95.0 % Lower Spec. Limit	99.0 %	Allowance:

Sample Size Determination (Statistical Tolerance Intervals)

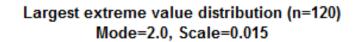
Conf. Level	Pop. Percentage	Distribution
95.0%	99.0%	

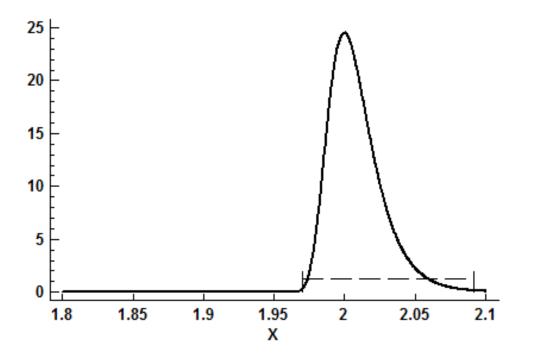
The required sample size is 473.

Lower tolerance limit	Upper tolerance limit
smallest observation	largest observation

Sample Size Determination – Parametric Limits

- How large should n be when fitting a normal or some other distribution?
- Different approaches to the problem.
 - 1. Choose *n* so that the probability of including P^* % or more of the population in the tolerance interval is small, where $P^* > P$.
 - 2. Choose *n* so that the probability of the entire tolerance interval being within the specification limits is large.




Example: LEV Distribution

	etermination - S	tatistical Tolerance Li	imits ×	
Distribution Cauchy	C Normal		ОК	
C Exponential	O Normal after	transformation	Cancel	
C Exponential (2-parameter)	O Pareto		Help	
🔿 Gamma	C Smallest extr	eme value		
C Laplace	O Weibull			
C Largest extreme value	O Nonparamet	ric		
C Lognormal				
Mode Scale 2.0 0.015				
Type of Limits	Confidence Level:	Population Proportion:		10 M
Two-sided	95.0 %	99.0 %		
C Lower limit only C Upper limit only	Lower Spec. Limit: 1.9	Upper Spec. Limit: 2.1		
Simulation Inclusion Percentage: Nur	mber of Trials:	Maximum n:		·••••

Requires n=120 Observations

System Preferences

Preferences	Preferences
Control Charts Runs Tests Crosstabs Text Graphics Gage Studies Language General EDA ANOVA/Regression Forecasting Stats Dist. Fit Capability Tests for Normality Plot Legends Include parameter estimates Image: Shapiro-Wilk Include parameter estimates Image: Kurtosis General Goodness-of-Fit Tests Image: Chi-square Chi-square	General EDA ANOVA/Regression Forecasting Stats Dist. Fit Capability Control Charts Runs Tests Crosstabs Text Graphics Gage Studies Language Crosshair cursor color Highlight color Surface Plots Surface Plots © Wireframe C Black Magenta © Red C Qyan © Solid © Solid © Contoured C Blue C Yellow © Green White © Contoured Contour Plots Color Palette General White White White © Lines
Kolmogorov-Smirnov Modified Kolmogorov-Smirnov D Kuiper V Cramer-Von Mises W^2 Watson U^2 Anderson-Darling A^2 Calculate distribution-specific P-values OK Cancel Show XML Help	• Windows RGB Colors • Named Web Colors Width: Height: 400 400 640 400 C Ontinuous C Continuous with grid Resolution for functions: Always Black and White Decimal Places for Labels: States Videos Frames per second: Maximum duration: 120 Seconds OK Cancel Show XML Help

References

 Video, slides and sample data may be found at <u>www.statgraphics.com/webinars</u>.

 Hahn, G.J., Meeker, W.Q. and Escobar, L.A. (2017) <u>Statistical Intervals: A Guide for</u> <u>Practitioners and Researchers</u>, second edition. Wiley, New York.

