

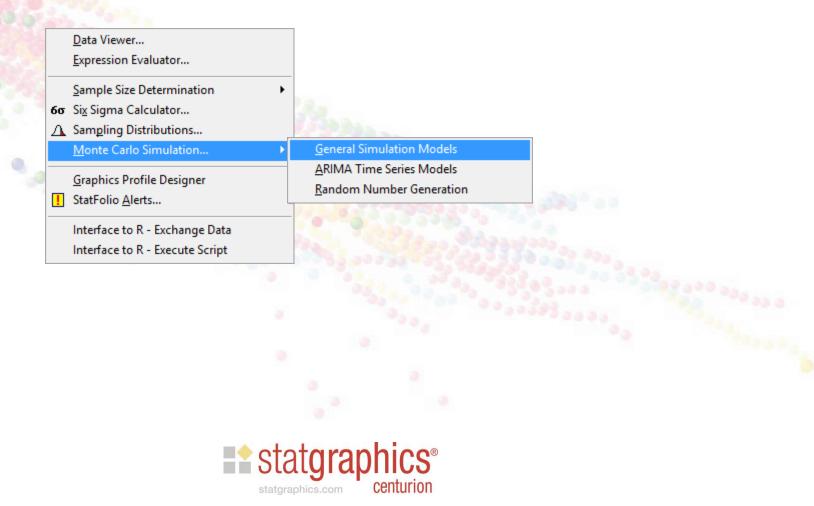
Monte Carlo Simulation

Presented by Dr. Neil W. Polhemus

Monte Carlo Simulation

"Monte Carlo simulations are used to model the probability of different outcomes in a process that cannot easily be predicted due to the intervention of random variables." *Investopedia*

Monte Carlo Simulation



"The world ... is full of more complicated systems the complex interaction of many variables — or the inherently probabilistic nature of certain phenomena — rules out a definitive prediction. So a Monte Carlo simulation uses essentially random inputs (within realistic limits) to model the system and produce probable outcomes." *MIT News*

Statgraphics Centurion XVII

Tools menu has a section for *Monte Carlo Simulation*:

Outline

- 1. Random number generators
- 2. Example #1: Estimating the amount of oil available in an oil reservoir
- 3. Example #2: Simulating the consumer price index using an ARIMA time series model

Random number generators

- Includes:
 - –7 discrete distributions
 - 39 continuous distributions
 - user-specified discrete distribution
 - user specifies values for x and p(x)
 - user-specified continuous distribution
 - user specifies values for x and F(x)

Example – Gamma Distribution

	×
Number of samples: 1 Sample size: 10000 Save to datasheet: A Random seed: 5025 Column Name Distribution Parameters 1 X1 Gamma GAMMA(10.0,2.0,0.0) 2 Gamma r.v. X	More Edit Edit
3	Edit Edit
12 13 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	Edit Edit Edit Edit

Example – Triangular Distribution

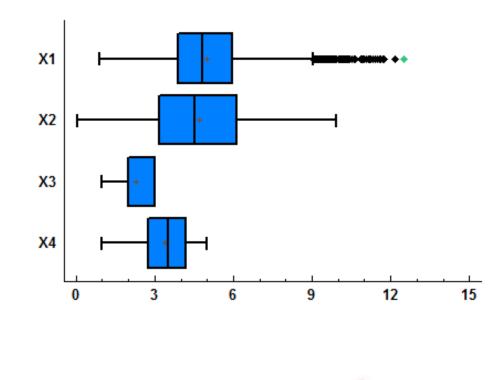
	F	Random Numbe	r Generator		×
Number of samples: 2	Sample size: 10000 S Distribution	Save to datasheet: A Parameters	Random seed: 20234		More
1 🛛 🛛 🖂	Gamma 💌		0.0)		Edit
2 X2	Triangular 💌	TRIANGULAR(0.0	,4.0,10.0)		Edit
3					Edit
4	- -		Triangular r.v.	× -	Edit
5			- Parameters	ОК	Edit
6	- -		Lower Limit		Edit
7			0.0	Cancel	Edit
8	_		Center	Help	Edit
9			4.0	-	E dit
10	_		Upper Limit	-	Edit
11	_		10.0	Ē	Edit
12	_			-	Edit
13	_			Ē	Edit
14	_			-	Edit
15	_				E dit
	ОК	Cancel		Help	

Example – User Specified Discrete

		R	andom Number	Generator		×
Nun	nber of samples: 3	Sample size: 10000 S	ave to datasheet: 🛛 🗛	▼ Random seed:	22898	More
	Column Name	Distribution	Parameters			
1	X1	Gamma 💌	GAMMA(10.0,2.0,0.0)]		Edit
2	X2	Triangular 🗨	TRIANGULAR(0.0,4	.0,10.0)		Edit
3	X3	User-specified discrete	USERD(1;0.2;2;0.3;	3;0.5)		Edit
4		_		Us	ser-Specified Discrete Distribution	on 🔼
5		-			X: pl	(×):
6	, 		·			
7			í			0.5
8			·			
9			, 			
10			, 			
11			, 			
12			1			
13			1			
14						
15		▼				
15		<u>_</u>	1			
		ОК	Cancel			
			0.0	Sort column names	v	× .
			etatara	ОК	Cancel	Help
			statgra	011109		
			statgraphics.com	centurion		

Example – User Specified Continuous

	Random Number Generator	×
Number of samples: 4	Sample size: 10000 Save to datasheet: 🗛 💌 Random seed: 22898	More
Column Name	Distribution Parameters	
1 X1	Gamma GAMMA(10.0,2.0,0.0)	Edit
2 X2	Triangular TRIANGULAR(0.0,4.0,10.0)	Edit
3 X3	User-specified discrete USERD(1;0.2;2;0.3;3;0.5)	Edit
4 🖂	User-specified continuous VUSERC(1;0.0;2;0.1;3;0.3;4;0.7;5;1.0)	Edit
5	User-Specified Continuous Distribution	×
6		
7		^
8		
9		
10		
11		
12		
13		
14		
15		
	OK Cance	
	Sort column names	×
		,
	STATG RAPHICS statgraphics.com centurion	


Datasheet

		<untitled></untitled>		
	X1	X2	Х3	X4 🔺
4				
1	4.4263	8.13002	3.0	4.43163
2	5.34978	3.42481	2.0	3.93414
3	5.09337	2.23698	3.0	3.38972
4	5.16672	4.29812	3.0	2.75472
5	3.42699	1.80771	2.0	3.99378
6	5.53609	0.932991	3.0	3.75126
7	2.89852	4.8701	2.0	3.24061
8	4.39979	4.49062	3.0	1.61507
9	5.33839	1.01202	3.0	2.94342
10	5.71663	7.69211	2.0	4.96178
11	6.15975	5.00934	3.0	3.13898
12	3.82894	8.36813	1.0	1.04288
13	4.61559	3.20668	3.0	4.79058
14	4.84695	4.00717	3.0	2.28208
15	4.51131	5.62881	2.0	3.14273
16	8.05416	3.10584	2.0	3.20243
17	5.78243	4.03803	3.0	4.97599
18	7.45231	2.58465	3.0	2.34332
	ABC			Þ

Box-and-Whisker Plot

Box-and-Whisker Plot

Begin with a mathematical function:

 $Y = f(X_1, X_2, X_3, ..., X_p)$

- Specify probability distributions for X_1 through X_p .
- Generate *n* sets of random numbers and plug them into the function.
- Calculate statistics from the *n* values of *Y*.

Example: Oil Reserves

Murtha presents the following volumetric model for oil in place:

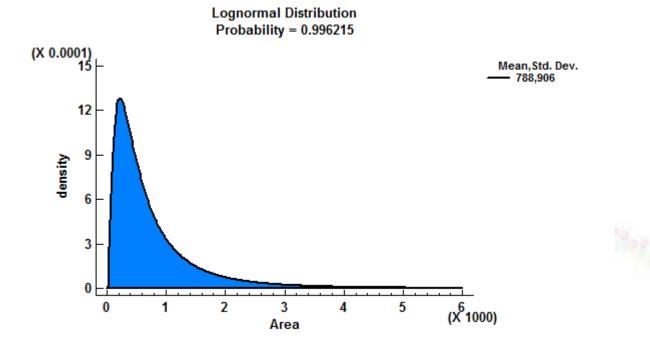
 $N = 7,758Ah\phi(1 - S_w) / B_o$ stock-tank barrels

where

- -A = area
- -h = net pay
- $-\phi = porosity$
- $-S_w = water saturation$
- B₀ = formation volume factor

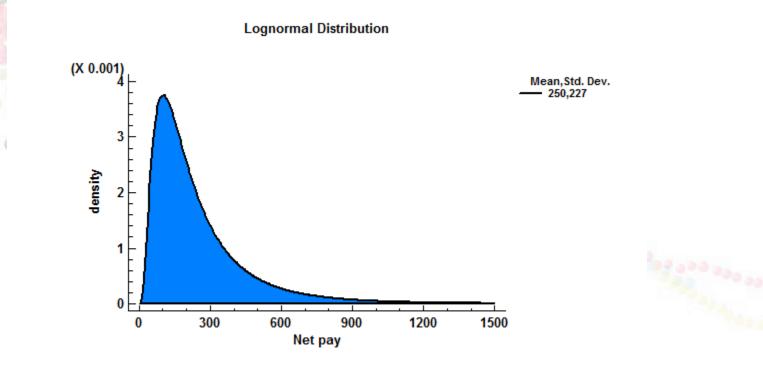
Question: Given a selected site, how small or large might N reasonably be?

Source: Murtha, J.A. 1994. "Incorporating Historical Data Into Monte Carlo Simulation". SPE Comp App 6 (2): 11-17. SPE-26245-PA.

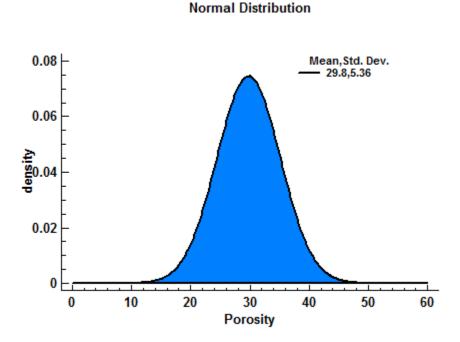

How do get parameter distributions?

- If we have historical data, we can fit a probability distribution using the Distribution Fitting (Uncensored Data) procedure in Statgraphics.
 - Murtha used data from 83 similar reservoirs
- We could specify the minimum value, most likely value, and maximum value and use a triangular distribution.
- We could specify the mean and standard deviation and use a normal distribution.
- We could specify 2 or more percentiles and find a matching nonnormal distribution.

Area

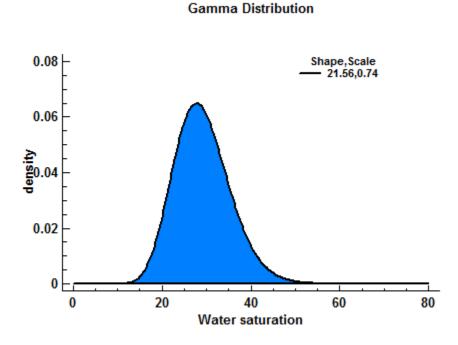

Characterized by a lognormal distribution with mean = 788 and standard deviation = 906

Net pay


 Characterized by a lognormal distribution with mean = 250 and standard deviation = 227

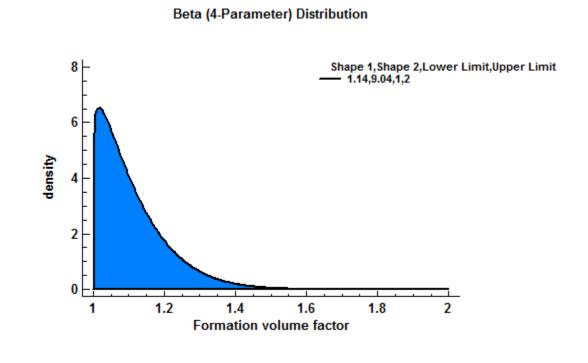
Porosity as %

 Characterized by a normal distribution with mean = 29.8 and standard deviation = 5.36



Water saturation as %

 Characterized by a gamma distribution with shape = 21.56 and scale = 0.74



Formation volume factor

Characterized by a beta distribution with shape1
 = 1.14 and shape2 = 9.04, in the interval [1,2]

Matching Percentiles

- *Water saturation*: suppose we are 90% certain that it is between 20 and 40 and want to use a gamma distribution.
- I have written an R script that I've saved in matchpercentiles.sgp that will find the parameters of various distributions for which the cdf satisfies:
 - F(20) = 0.05
 - F(40) = 0.95

R Script

```
Interface to R - Execute Script
                                                                                   - - X
 #LOAD REQUIRED LIBRARY
 library(nleqslv)
 ## Warning: package 'nlegslv' was built under R version 3.2.5
 #SET VALUES FOR X WITH PROBABILITIES
 X<-c(20,40)
 p < -c(0.05, 0.95)
 #DEFINE FUNCTION TO RETURN DIFFERENCES FROM TARGET VALUES
 fn <- function(parms,X,p,dist) {</pre>
 result<-c(999,999)
 if(parms[1]>0.0&&parms[2]>0.0) {
      if(dist==1) result <- p - pgamma(X,parms[1],parms[2])</pre>
      if(dist==2) result <- p - plnorm(X,parms[1],parms[2])</pre>
      if (dist==3) result <- p - pnorm(X,parms[1],parms[2]) }
 return (result) }
 #SOLVE FOR GAMMA PARAMETER VALUES
 sol<-nleqslv(c(1.0,0.01),fn,p=p,X=X,dist=1,control=list(allowSingular=TRUE))</pre>
 sol$x
 ## [1] 22.9498931 0.7839015
 #SOLVE FOR LOGNORMAL PARAMETER VALUES
 sol<-nlegslv(c(10,1),fn,p=p,X=X,dist=2,control=list(allowSingular=TRUE))</pre>
 c(exp(sol$x[1]+0.5*sol$x[2]^2).sqrt(exp(2*sol$x[1]+sol$x[2]^2)*(exp(sol$x[2]^2)-1)))
 ## [1] 28.919135 6.161571
 #SOLVE FOR NORMAL PARAMETER VALUES
 sol<-nleqslv(c(2000,500),fn,p=p,X=X,dist=3,control=list(allowSingular=TRUE))</pre>
 sol$x
 ## [1] 30.000000 6.079568
< 1
```


Step 1: create datasheet with variables

	Area	Net pay	Porosity	Water saturation	FVF	N	
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							1.0.0
14							
15							
16							
17							
18							
19							

Step 2: define the simulation

			Monte Carlo Simulation	×
Nur	nber of variables: 🔋 👘			More
	Variable	Туре	Definition	
1	Area 💌	Lognormal r.v. 💌	LOGNORMAL(788.0,906.0,0.0)	Edit
2	Net pay 💌	Lognormal r.v. 💌	LOGNORMAL(250.0,227.0,0.0)	Edit
3	Porosity 💌	Normal r.v.	NORMAL(29.8,5.36)	Edit
4	Water saturation 💌	Gamma r.v. 💌	GAMMA(21.56,0.74,0.0)	Edit
5	FVF 💌	Beta r.v. 💌	BETA(1.14,9.04,1.0,2.0)	Edit
6	N 💌	Function	7758*Area*Net pay*(Porosity/100)*(1-Water saturation/100)/FVF	Edit
7	_	_		Edit
8	_	_		Edit
9	_	_		Edit
10	_	_		Edit
11	_	_		Edit
12		_		Edit
13		_		Edit
14		- -		Edit
15		- -		Edit
		ок	Cancel Help	

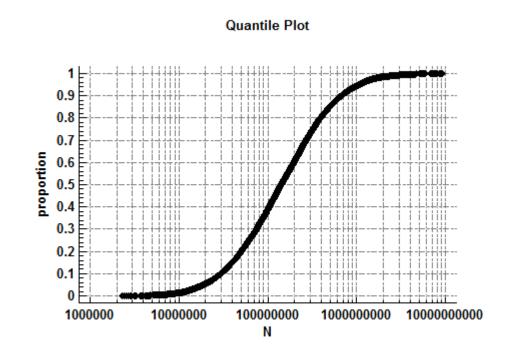
• Step 3: run the simulation

R.	Monte Carlo Op	otions ×	
	Monte Carlo Op Sample size: 10000 Random number generator Random number generator New seed on each run Fix seed at: 16163	OK Cancel Help	
	statgraphics.com	phics®	

Step 4: calculate summary statistics

Summary Statistics

	Area	Net pay	Porosity	Water saturation	FVF	Ν
Count	10000	10000	10000	10000	10000	10000
Average	798.257	254.146	29.7738	29.1382	1.11129	3.02279E8
Median	520.151	187.103	29.7858	28.6549	1.08525	1.41263E8
Standard deviation	921.451	235.396	5.34707	6.2976	0.094791	5.81547E8
Coeff. of variation	115.433%	92.6223%	17.959%	21.6128%	8.5298%	192.388%
Minimum	13.2084	11.7636	3.71162	10.7716	1.00003	2.31833E6
Maximum	18030.1	3364.35	50.0127	58.1647	1.62905	1.8165E10
Range	18016.9	3352.59	46.3011	47.3931	0.62902	1.81627E10
Lower quartile	284.913	110.926	26.1484	24.6363	1.03933	6.15614E7
Upper quartile	963.019	318.933	33.3238	33.0429	1.15893	3.22183E8
Stnd. skewness	189.92	139.082	-0.101744	19.5701	55.7774	372.656
Stnd. kurtosis	882.858	425.331	0.724102	7.0223	41.8117	3189.81


Step 5: calculate percentiles

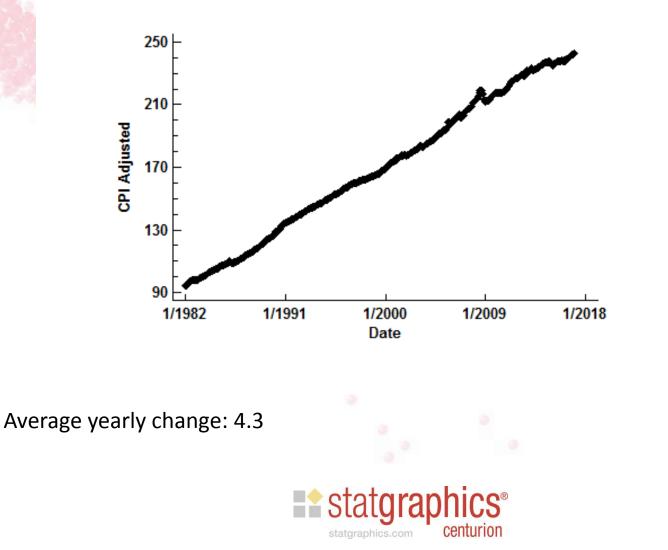
Percentiles

Percentage	Area	Net pay	Porosity	Water saturation	FVF	Ν
1.0%	63.8958	30.9285	17.3382	16.6558	1.00185	8.72609E6
5.0%	117.535	50.8366	21.0517	19.7407	1.00836	1.90795E7
10.0%	162.918	67.8868	22.8418	21.4664	1.01613	2.95456E7
25.0%	284.913	110.926	26.1484	24.6363	1.03933	6.15614E7
50.0%	520.151	187.103	29.7858	28.6549	1.08525	1.41263E8
75.0%	963.019	318.933	33.3238	33.0429	1.15893	3.22183E8
90.0%	1733.26	512.351	36.5647	37.4472	1.24328	6.72699E8
95.0%	2352.44	676.942	38.6333	40.3498	1.30265	1.07355E9
99.0%	4462.55	1157.71	42.4143	46.0589	1.41934	2.5423E9

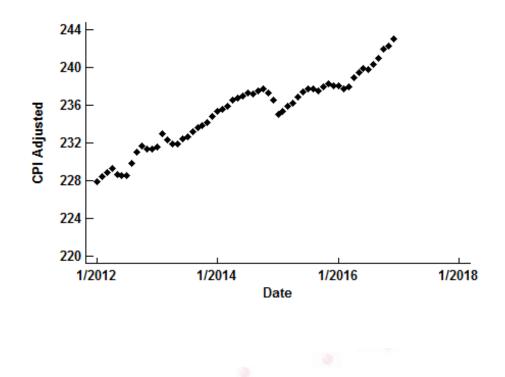
Step 6: create a quantile plot for the response

Example #2: Consumer Price Index

All urban consumers, all items, 1982-2016


	Year	Month	CPI	Date	CPI Adjusted 🧎
					-
1	1982	Jan	94.3	1/1982	94.4
2	1982	Feb	94.6	2/1982	94.7
3	1982	Mar	94.5	3/1982	94.7
4	1982	Apr	94.9	4/1982	95.0
5	1982	Мау	95.8	5/1982	95.9
6	1982	Jun	97.0	6/1982	97.0
7	1982	Jul	97.5	7/1982	97.5
8	1982	Aug	97.7	8/1982	97.7
9	1982	Sep	97.9	9/1982	97.7
10	1982	Oct	98.2	10/1982	98.1
11	1982	Nov	98.0	11/1982	98.0
12	1982	Dec	97.6	12/1982	97.7
13	1983	Jan	97.8	1/1983	97.9
14	1983	Feb	97.9	2/1983	98.0
15	1983	Mar	97.9	3/1983	98.1
16	1983	Apr	98.6	4/1983	98.8
17	1983	Мау	99.2	5/1983	99.2
18	1983	Jun	99.5	6/1983	99.4
19	1983	Jul	99.9	7/1983	99.8
20	1983	Aug	100.2	8/1983	100.1

Source: https://www.bls.gov/cpi/data.htm


CPI during last 35 years

Plot of CPI Adjusted vs Date

CPI during last 5 years

Plot of CPI Adjusted vs Date

Average yearly change: 3.2

Simulating ARIMA Time Series Models

- Steps
 - Fit an ARIMA model to the CPI data
 - Generate several possible realizations
 - Plot the realizations on a single graph
- Useful as input to financial models

Automatic Forecasting

	Automatic Forecasting	×
Year Month CPI	Data:	
Date CPI Adjusted	(Time Indices:) Date or Sampling Interval Once Every: 1	
	C Year(s) (4-digit) C Hour(s) Starting At: C Quarter(s) C Minute(s) 1 C Month(s) C Second(s) C Day(s) C Other	
	(Seasonality:) (Trading Days Adjustment:)	
Sort column names	(Select:) Number of Forecasts: Withhold for Validation: 60 0	
OK	Cancel Delete Transform Help	
	statgraphics [®]	

statgraphics.com

centurion

Analysis Options

Models to Include		
Random Walk		OK
Random Walk with Drift	Optimize Parameters	Cancel
🗌 Mean	Optimize Parameters	Help
🗌 Linear Trend	Optimize Parameters	⊢ Method Selection Criterion
🔲 Quadratic Trend	Optimize Parameters	
Exponential Trend	Optimize Parameters	Akaike Information Criterion (AIC)
S-Curve	Optimize Parameters	C Hannan-Quinn Criterion (HQC)
Moving Average	Optimize Parameters	C Schwarz Bayesian Inf. Criterion (SBIC)
🔲 Simple Exp. Smoothing	Optimize Parameters	C Mean Squared Error (MSE)
🔲 Brown's Linear Exp. Smoothing	Optimize Parameters	Mean Absolute Error (MAE)
🔲 Holt's Linear Exp. Smoothing	Optimize Parameters	C Mean Abs. Percentage Error (MAPE)
Quadratic Exp. Smoothing	Optimize Parameters	
🔲 Winters' Exp. Smoothing	🔽 Optimize Parameters	Adjustments
ARIMA: Optimize Model Order	Optimize Parameters Differencies (c)	Parameters
AR Terms (p) Nonseasonal: 2 Nonseasonal: 2	2 Differencing (d) 2 Nonseasonal: 2	
		Estimation
	0 Seasonal: 0	Input series
☐ Fix q at p-1	Include constant	

Estimated Model

Forecast Summary

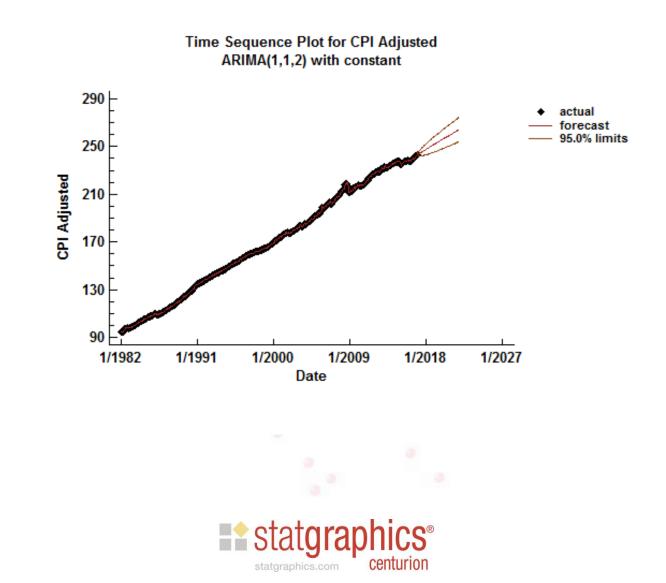
Forecast model selected: ARIMA(1,1,2) with constant Number of forecasts generated: 60 Number of periods withheld for validation: 0

	Estimation	Validation
Statistic	Period	Period
RMSE	0.42377	
MAE	0.268858	
MAPE	0.155123	
ME	-0.0000700932	
MPE	-0.000434589	

ARIMA Model Summary

Parameter	Estimate	Stnd. Error	t	P-value
AR(1)	-0.595915	0.219866	-2.71036	0.007000
MA(1)	-1.12592	0.209141	-5.38357	0.000000
MA(2)	-0.407999	0.0889357	-4.58757	0.000006
Mean	0.355178	0.0328146	10.8238	0.000000
Constant	0.566833			

10 00



Backforecasting: yes

Estimated white noise variance = 0.179583 with 415 degrees of freedom Estimated white noise standard deviation = 0.423772 Number of iterations: 8

Forecast Plot

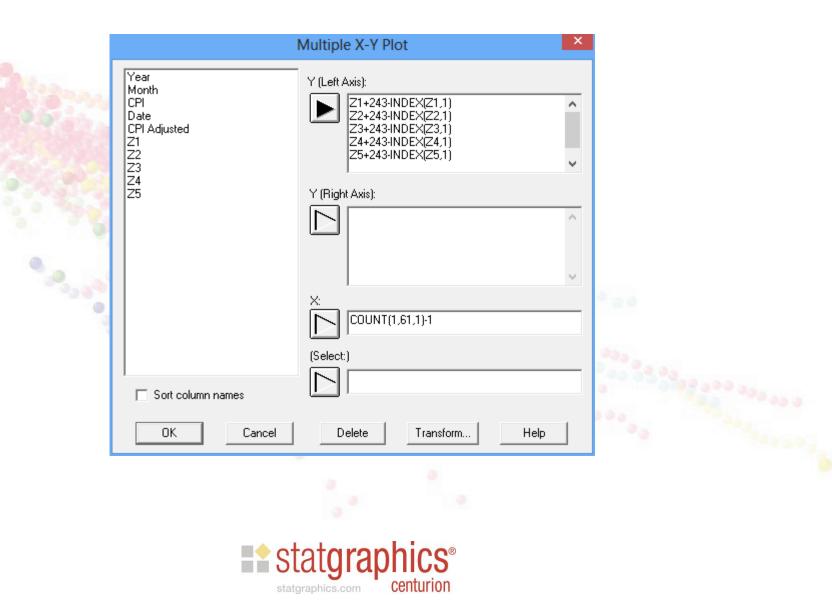
ARIMA Model Simulation

		ARIM	IA Model Simulat	or		×	
Mean: 0.355178	White no 0.42377	ise sigma: 2	Sample size:	Random 7891	seed:		
Nonseasonal Factors p: 1 1 -0.595915 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0	d: 1 •	q: 2 -1.12592 -0.407999 0.0 0.0 0.0 0.0 0.0	Seasonal Factors P: 0 + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	D: 0 •	Q: 0 +	S: 12	
	OK		Cancel		Help		** **
				0.0			
		statar	atgraphi aphics.com cent	CS [®]			

Simulated Time Series

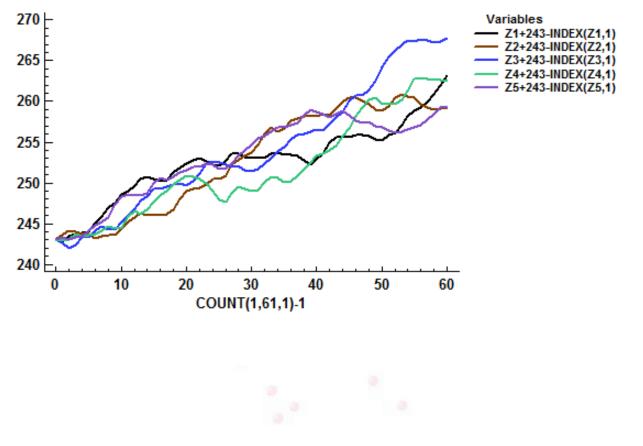
ARIMA Model Simulation
Sample size: 61 Seed for random number generator: 7872 Mean: 0.355178 Sigma: 0.423772 Nonseasonal Factors <u>AutoRegressive p=1 0.595915</u> <u>Differencing d=1</u> <u>Moving Average q=2 1.12592,-0.407999</u> The StatAdvisor This procedure generates random samples from ARI/MA time serie datasheet.

Save Data


Save Generated data	Save Results Options Target Variables Z1	OK Cancel Help	
		Datasheet CACN CCCP CDCQ CECR CECR CECR CECR CECX CUCV CUCV CUCV CUCV CUCV CUCV CUCV	
Autosave	Save comments		
	statgraphics.com		

Multiple Realizations

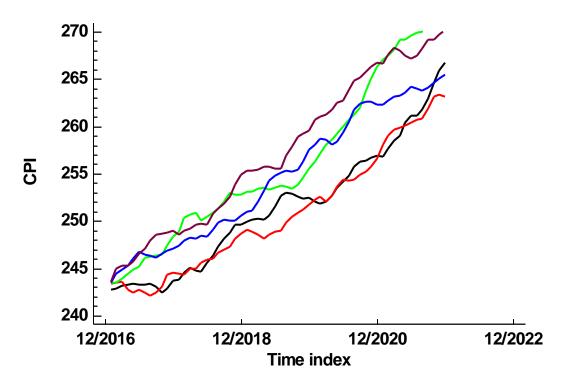
		<untitled></untitled>					
		Z1	Z2	Z3	Z 4	Z5	
		Generated data	Generated data	Generated data	Generated data	Generated data	
	1	19.4499	23.7789	9.86124	22.7656	25.7688	
	2	19.6846	23.7468	9.89014	22.9462	26.0434	
	3	20.4016	24.9258	10.174	22.7485	26.573	
	4	20.9872	25.4891	10.2415	22.7572	27.1589	
	5	20.7981	25.9981	10.3698	22.8612	27.5835	
	6	21.4019	25.495	10.3129	23.0409	27.9823	
	7	21.7082	26.138	10.3202	22.8159	27.578	
	8	21.809	26.666	10.4096	22.724	27.5002	
	9	21.9993	26.5306	10.1109	23.6937	27.9449	
	10	23.1193	26.264	9.43815	24.2098	28.2149	
	11	23.8161	26.2418	9.85697	24.1366	29.0662	
	12	24.9937	25.7055	10.7021	24.2449	29.8427	
	13	25.5259	25.939	10.8019	24.959	30.2293	
	14	26.5991	26.0924	11.5299	24.7239	29.8991	
	15	26.9825	26.1303	12.0654	24.841	30.1412	
	16	27.6518	26.8526	11.7374	24.9927	30.2666	
	17	28.4898	27.6915	11.6341	25.2819	31.0328	
	18	28.7695	28.2499	12.6396	25.9487	31.6175	
	19	28.4309	28.7619	13.3927	25.6802	32.0427	
	20	28.2571	28.5678	14.3091	25.8167	32.633	
K	<►►	ConsumerPriceIndex	BC	4		Þ	



Plot Multiple Realizations

Plot Multiple Realizations

Multiple X-Y Plot



Upcoming Enhancement

Year	(Starting values:)
Month CPI	CPI Adjusted
Date CPI Adjusted	
	(Time indices:)
	Date
	(Select:)
Sort column names	
OK Cancel	Delete Transform Help
	0 0
	statgraphics.com

Using Historical Data as Starting Values

Time Sequence Plot

Resources

- StatFolios and data files are at: <u>www.statgraphics.com/webinars</u>
- Recorded webinar will be posted soon.

