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Introduction 
STATGRAPHICS Centurion contains an extensive set of procedures for creation and analysis of 
designed experiments. The intent of this guide is to explore a typical use of those procedures, 
beginning with the creation of a screening experiment to determine the most important factors 
affecting a process and ending with the determination of optimal operating conditions. Since 
most experimentation is sequential in nature, the narrative is structured in a step-by-step format. 

Scenario 
The scenario we will consider is that of an injection molding process. Following the example in 
Statistics for Experimenters, 2nd edition by Box, Hunter and Hunter (Wiley, 2005), we consider 
the case of researchers interested in studying the effects of various controllable factors on several 
response variables, including shrinkage and warpage. After much discussion, they narrowed the 
list of experimental factors to the following eight: 
 
 Factor A: mold temperature 
 Factor B: moisture content 
 Factor C: holding pressure 
 Factor D: cavity thickness 
 Factor E: booster pressure 
 Factor F: cycle time 
 Factor G: gate size 
 Factor H: screw speed 
 
Their eventual goal was to find levels of each factor that would minimize both shrinkage and 
warpage.  
 

Step 1: Design a Screening Experiment 
It has long been recognized that optimization of most processes requires a multivariate approach. 
Except in situations where the experimental factors act in a purely additive manner and never 
interact, one cannot expect to find the optimal operating conditions by optimizing the process 
with respect to only one factor at a time. On the other hand, attempting to optimize more than 3 
or 4 factors at one time can be both expensive and confusing. In most cases, a handful of factors 
will be responsible for most of the variation seen in a product. Identifying that set of factors from 
a large list of possible candidates is usually a necessary prerequisite to the actual optimization. 
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Procedure: Screening Design Selection 
The experimental design section of STATGRAPHICS Centurion contains a procedure designed 
to help create a screening experiment. To use this procedure: 
 

• If using the Classic menu, select: DOE – Design Creation – Screening Design Selection. 
• If using the Six Sigma menu, select: Improve – Experimental Design Creation – 

Screening Design Selection. 
 
The procedure begins by displaying the dialog box shown below: 
 

 
Figure 1: First Screening Design Selection Dialog Box 
 
On this dialog box, you indicate the type of designs you wish to consider and other important 
information. In this case, we have requested that the program look at only pure two-level 
factorials and fractional factorial designs, since we expect that we may need to augment the 
design after it is run. These designs consist of a subset of runs at two levels of each experimental 
factor, with the total number of runs being a power of 2. 
 
A very important entry on the dialog box is the Experimental error sigma. This refers to the 
repeatability of any experimental run. It encompasses the noise in setting up the run, variations in 
external factors, measurement error, and everything else that causes the results to differ when we 
try to repeat the same experiment more than once under similar conditions. From other 
experiments, it is supposed that we believe that σ for shrinkage (considered to be the more 
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important response variable of the two) will be approximately equal to 0.5%. We could also add 
restrictions about block size or minimum centerpoints if we wanted, but have elected not to. 
 
The procedure then displays a second dialog box: 
 

 
Figure 2: Second Screening Design Selection Dialog Box 
 
On this dialog box, we indicate the precision that we desire for this experiment. By selecting the 
Power option and specifying the Effect to Detect, we have requested designs that have a 90% 
chance of detecting (declaring as statistically significant) any factors or interactions that make a 
difference of 1.0% or more in shrinkage. 
 
The procedure then opens an analysis window and shows us the smallest designs of each type 
that meet the desired criteria: 
 
Screening Design Selection 
 
Input 
Number of Min. Centerpoints Max. Runs Exp. Error Desired Target Confidence 
Factors per Block per Block Sigma Power Effect Level 
8 0  0.5 90.0% 1.0 95.0% 

 
Selected Designs 
   Corner Center Error    
Design Runs Resol. Points Points D.F. Reps. Blocks Power (%) 
Half fraction 2^8-1 128 V+ 128 0 91 1 1 100.0 
Quarter fraction 2^8-2 64 V 64 0 27 1 1 99.9999 
Sixteenth fraction 2^8-4 22 IV 16 6 6 1 1 91.4633 

 
The StatAdvisor 
The table shows 3 experimental designs which have at least a 90% chance of detecting an effect of magnitude 2. 

Figure 3: Suggested Screening Designs 
 
There are 3 designs, ranging from 22 runs up to 128 runs. The smallest resolution V design, 
which is a design that can estimate the main effects of the 8 factors and all 2-factor interactions, 
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requires that we perform 64 runs. If we can live with a resolution IV design, which estimates 
main effects clearly but confounds 2-factor interactions, we can get away with only 22 runs. 
 
The 22-run design consists of 16 different combinations of high and low levels of the 8 
experimental factors (corner points), plus 6 replicates at the center of the design region. The 6 
replicates are needed to get a good estimate of the experimental error σ. If we don’t want to run 

quite so many centerpoints, we can press the Analysis Options button  on the analysis toolbar 
and change the settings to reduce the experiment to 19 runs: 
 

 
Figure 4: Restricting the Number of Runs 
 
The Analysis Summary then displays just one selection: 
 
Screening Design Selection 
 
Input 
Number of Min. Centerpoints Max. Runs Exp. Error Total # Confidence 
Factors per Block per Block Sigma of Runs Level 
8 0  0.5 19.0 95.0% 

 
Selected Designs 
   Corner Center Error    
Design Runs Resol. Points Points D.F. Reps. Blocks Tolerance 
Sixteenth fraction 2^8-4 19 IV 16 3 3 1 1 0.795612 

 
The StatAdvisor 
The table shows 1 experimental designs which have no more than 19 runs. 

Figure 5: Restricted Selection of Screening Designs 
 
With only 19 runs, the resolution IV design shows a Tolerance equal to 0.8. The Tolerance is 
defined as the margin of error associated with estimating the effect of each factor, based on a 
95% confidence interval of the form 
 
  estimated effect ± tolerance 
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For the 19-run design, we can expect to be able to estimate any effect to within about ±0.8% with 
95% confidence. 
 
The Screening Design Selection procedure also displays a power curve for the experiment: 
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          Figure 6: Power Curve for the 19-Run Design 
 
The Power Curve plots the probability of obtaining a statistically significant result if an 
experimental factor is changed from one level to the other, as a function of its true magnitude or 
effect. Note that the curve is approximately 80% at a true effect of plus or minus 1. Although not 
the 90% chance that we originally hoped for, there is still a 4 out of 5 chance that we will declare 
as significant any factor that makes a 1% difference in shrinkage. 
 

Step 2: Construct the Screening Design 
Once we’ve decided on the design to run, we can now ask STATGRAPHICS Centurion to 
construct the design and place it in a datasheet.  
 
Procedure: Create New Design 
To create a new design: 
 

• If using the Classic menu, select: DOE – Design Creation – Create New Design. 
• If using the Six Sigma menu, select: Improve – Experimental Design Creation – Create 

New Design. 
 
A sequence of dialog boxes will then be presented on which to specify the desired design 
attributes. The first dialog box specifies the type of design, the number of responses, and the 
number of experimental factors: 
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Figure 7: First Design Creation Dialog Box 
 
The second dialog box requests names for each factor and the limits over which that factor will 
be varied: 
 

 
Figure 8: Second Design Creation Dialog Box 
 
Since all factors in this experiment can be varied continuously between their low and high levels, 
the Continuous box should be checked for each. 
 
The third dialog box specifies the names and units of each response variable: 
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Figure 9: Third Design Creation Dialog Box 
 
The fourth dialog box contains a pull-down list of all screening designs with 8 experimental 
factors: 
 

 
Figure 10: Fourth Design Creation Dialog Box 
 
The design chosen earlier is the Sixteenth fraction, which contains 16 runs at carefully chosen 
combinations of the low and high levels of each factor. Note that 0 degrees of freedom are 
available from which to estimate the experimental error. This will be rectified on the next dialog 
box when centerpoints are added to the design. 
 
The fifth and final dialog box specifies options for the selected design: 
 



© 2005 by StatPoint, Inc.  8 

 
Figure 11: Fifth Design Creation Dialog Box 
 
To estimate the experimental error, 3 centerpoints have been requested, brining the total number 
of experimental runs to 19. It has also been requested that all of the runs be done in random 
order.  
 
After the final dialog box has been completed, an analysis window entitled Screening Design 
Attributes will be created. This window summarizes the design: 
 
Screening Design Attributes 
Design class: Screening 
Design name: Sixteenth fraction           2^8-4       
File name: howto9.sfx 
Comment: Injection molding design                              
 
Base Design 
Number of experimental factors: 8 
Number of blocks: 1 
Number of responses: 2 
Number of runs: 19, including 3 centerpoints per block 
Error degrees of freedom: 3 
Randomized:Yes 
 
Factors Low High Units Continuous 
Mold Temperature 175 200 degrees C Yes 
Moisture Content .1 .2 % Yes 
Holding Pressure 50 60 Mpa Yes 
Cavity Thickness 2 3 mm Yes 
Booster Pressure 65 70 Mpa Yes 
Cycle Time 35 40 seconds Yes 
Gate Size .80 .95 mm Yes 
Screw Speed 250 500 rpm Yes 

 
Responses Units 
Shrinkage % 
Warpage %  

Figure 12: Screening Design Attributes Summary 
 
Each of the experimental factors and response variables is summarized. 
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It is also instructive to press the Tables button  on the analysis toolbar and request the Alias 
Structure: 
 

Alias Structure 
Contrast Estimates 
1 A 
2 B 
3 C 
4 D 
5 E 
6 F 
7 G 
8 H 
9 AB+CG+DH+EF 
10 AC+BG+DF+EH 
11 AD+BH+CF+EG 
12 AE+BF+CH+DG 
13 AF+BE+CD+GH 
14 AG+BC+DE+FH 
15 AH+BD+CE+FG 

 
The StatAdvisor 
The alias structure shows which main effects and interactions are confounded with each other.  Since this design is resolution 
IV, the main effects will be clear of the two-factor interactions.  However, at least one two-factor interaction will be confounded 
with another two-factor interaction or a block effect.  You will not be able to estimate these interactions.  Check the table to 
determine which interactions are confounded.   

Figure 13: Confounding Pattern for the Design 
 
Each line of this table shows an effect or combination of effects that the design will be capable of 
estimating. A single letter such as “A” represents the main effect of a factor. Since each main 
effect appears alone on a separate line, they can be estimated clear of any other effects in the 
design. The terms such as “AB” represent interactions between pairs of factors. In this case, each 
two-factor interaction is confounded with 3 other such interactions. That implies that we will not 
be able to separately estimate each of the interactions, which makes sense, since there are not 
enough runs to separately estimate all of those effects. 
 
The final experimental design, which consists of 19 runs, will have been loaded into datasheet A: 
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Figure 14: Final Design Loaded into Datasheet A 
 
The datasheet contains: 
 

1. One row for each experimental run to be performed. 
 
2. A column labeled Block that identifies which block each run is assigned to. This is only 

relevant when the runs have been grouped into blocks according to an additional nuisance 
factor. In this case, all of the runs are contained in a single block. 

 
3. A column for each experimental factor. 

 
4. A column for each response variable. 

 
 
Step 3: Perform the Screening Experiment 
The 19 runs in the experimental design would then be performed and the values of the response 
variables entered into the appropriate columns of the datasheet. If more than one measurement is 
taken during each run, perhaps from multiple samples, then the entry in the cell would usually be 
the average value of the measurements. Additional response variables could also be added to the 
end of the datasheet to contain standard deviations or other sample statistics that the 
experimenter wished to analyze. 
 
The data for this example have been saved in the file howto9.sfx. Note that experiment files in 
STATGRAPHICS Centurion have a special extension, since they contain not only the data but 
also additional information about the type of experimental design that was created. 
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Step 4: Analyze the Results 
To analyze the results of the experiment: 
 

• If using the Classic menu, select: DOE – Design Analysis – Analyze Design. 
• If using the Six Sigma menu, select: Improve – Experimental Design Analysis – Analyze 

Design. 

A data input dialog box will appear, listing each of the response variables: 
 

 
Figure 15: Analyze Design Data Input Dialog Box 
 
A separate analysis will be done on each response, which may be affected by different 
experimental factors. 
 
Analysis of Shrinkage 
The first step in analyzing a screening design is to determine which factors have a significant 
impact on the response variables. This is most easily done using a Pareto Chart, which is 
generated by default when the analysis window is created: 
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Standardized Pareto Chart for Shrinkage
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Figure 16: Standardized Pareto Chart for Shrinkage 
 
The standardized Pareto Chart contains a bar for each effect, sorted from most significant to least 
significant. The length of each bar is proportional to the standardized effect, which equals the 
magnitude of the t-statistic that would be used to test the statistical significance of that effect. A 
vertical line is drawn at the location of the 0.05 critical value for Student’s t. Any bars that 
extend to the right of that line indicate effects that are statistically significant at the 5% 
significance level.  
 
Exact P-values may also be obtained from the ANOVA Table: 
 
Analysis of Variance for Shrinkage - Injection molding example 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
A:Mold Temperature 0.393756 1 0.393756 3.42 0.1614 
B:Moisture Content 0.0770063 1 0.0770063 0.67 0.4732 
C:Holding Pressure 19.1188 1 19.1188 166.18 0.0010 
D:Cavity Thickness 0.00075625 1 0.00075625 0.01 0.9405 
E:Booster pressure 3.14176 1 3.14176 27.31 0.0136 
F:Cycle Time 0.00030625 1 0.00030625 0.00 0.9621 
G:Gate Size 0.107256 1 0.107256 0.93 0.4055 
H:Screw Speed 0.0351563 1 0.0351563 0.31 0.6189 
AB+CG+DH+EF 0.00455625 1 0.00455625 0.04 0.8550 
AC+BG+DF+EH 0.0217562 1 0.0217562 0.19 0.6930 
AD+BH+CF+EG 0.00000625 1 0.00000625 0.00 0.9946 
AE+BF+CH+DG 0.0637562 1 0.0637562 0.55 0.5106 
AF+BE+CD+GH 0.0885062 1 0.0885062 0.77 0.4450 
AG+BC+DE+FH 0.0637562 1 0.0637562 0.55 0.5106 
AH+BD+CE+FG 0.701406 1 0.701406 6.10 0.0901 
Total error 0.345148 3 0.115049   
Total (corr.) 24.1636 18    
Figure 17: Analysis of Variance Table for Shrinkage 
 
Note that there are two effects with P-values below 0.05: the main effect of Holding Pressure 
and the main effect of Booster Pressure. Another effect, consisting of the sum of four 
interactions AH+BD+CE+FG, has a P-value of approximately 0.09. Since we decided to run an 
experiment with only three degrees of freedom for the error term, P-values in the neighborhood 
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of 0.1 may be large enough to be interesting. As with all resolution IV designs, it is impossible to 
determine which of the four interactions is responsible for the large effect. However, since the 
effect contains the interaction of the two significant main effects (factors C and E), a large CE 
interaction is the most likely explanation. 
 
If we use Analysis Options to exclude all effects other than C, E, and CE, the following 
Interaction Plot may be obtained: 
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Figure 18: Interaction Plot for Holding Pressure and Booster Pressure 
 
Evidently, increasing Holding Pressure reduces Shrinkage. In addition, the effect is more 
pronounced at lower Booster Pressure. 
 
The effect of the two factors is also well displayed by a contour plot: 
 

Contours of Estimated Response Surface
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Figure 19: Contour Plot for Holding Pressure and Booster Pressure 
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The region of dark blue toward the right bottom indicates combinations of pressure that would 
result in relatively low shrinkage. 
 
Analysis of Warpage 
When the same analysis is performed on Warpage, there are two significant main effects shown 
on the Pareto Chart, Holding Pressure and Cycle Time: 
 

Standardized Pareto Chart for Warpage
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Figure 20: Standardized Pareto Chart for Warpage 
 
Excluding all other factors from the model yields the following Contour Plot: 
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Figure 21: Contour Plot for Warpage 
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Evidently, low Warpage is achieved at high values of Holding Pressure and low values of Cycle 
Time. 
 

Step 5: Follow the Path of Steepest Ascent/Descent 
It appears that both Shrinkage and Warpage can be decreased by increasing the Holding 
Pressure. At the same time, decreasing Booster Pressure should reduce Shrinkage, while 
increasing Cycle Time should reduce Warpage. 
 
In order to confirm these results, the researchers decided to do some experiments along the path 
of steepest descent. This is the path that is predicted to decrease the responses most quickly for 
the smallest changes in the input factors. We will have to generate two paths: one for each 
response. To generate the path for Shrinkage, we will first collapse the design by removing all 
variables except Holding Pressure and Boosting Pressure. This is done as follows: 
 
1. Close the Howto9.sgp StatFolio.  
 
2. Reopen the Howto9.sfx experiment file in datasheet A. 
 
3. Go the top menu and select: 
 

• If using the Classic menu, select: DOE – Design Creation – Augment Existing Design. 
• If using the Six Sigma menu, select: Improve – Experimental Design Creation – Augment 

Existing Design. 
 

When the first dialog box appears, indicate that you wish to collapse the design: 
 

 
Figure 22: First Augment Design Dialog Box 
 
One the second dialog box, indicate that you wish to remove Mold Temperature from the 
design: 
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Figure 23: Second Augment Design Dialog Box 
 
When you press OK, the column for Mold Temperature will be deleted from datasheet A. 
Now repeat this process until only Holding Pressure and Booster Pressure remain in the 
design. Then use File – Save As to save the design with a new name. 

 
4. Select Analyze Design and refit the model for Shrinkage. It should contain three significant 

effects, now labeled A, B and AB, as shown in the Pareto chart below: 
 

Standardized Pareto Chart for Shrinkage
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Figure 24: Pareto Chart for Shrinkage After Collapsing Design 

 
5. Finally, select Path of Steepest Ascent from the list of Tables available in the Analyze Design 

window. Before examining the results, press Pane Options and set the options as shown 
below: 
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Figure 25: Pane Options Dialog Box for Path of Steepest Ascent 
 
The dialog box above requests 5 steps along the path of steepest ascent or descent, each 
changing Holding Pressure by 5 Mpa. The program will then calculate and display the values 
of all other factors so that you will move along the path: 
 
Path of Steepest Ascent for Shrinkage 
  Predicted 
Holding Pressure Booster Pressure Shrinkage 
(Mpa) (Mpa) (%) 
55.0 67.5 5.30368 
60.0 66.3038 3.89835 
65.0 64.7984 2.18605 
70.0 63.0635 0.12325 
75.0 61.1606 -2.31619 
80.0 59.1345 -5.1478 
Figure 26: Calculated Points Along the Path of Steepest Ascent 
 
As Holding Pressure is increased, Booster Pressure is decreased. Note that the predicted 
Shrinkage falls rapidly as one moves along the path. Eventually, extrapolation of the model 
leads to unrealistic negative predictions. While such models can not be expected to predict 
well too far outside the experimental region, they do give a good suggestion of the direction 
to look for improved results. 
 

To generate the path of steepest descent for Warpage, you must now reload the original design. 
This time, collapse out all factors except for Holding Pressure and Cycle Time. Then select 
Analyze Design to fit a model with the remaining two factors. The standardized Pareto chart 
should appear as illustrated below: 
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Standardized Pareto Chart for Warpage
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Figure 27: Pareto Chart for Warpage After Collapsing Design 
 
Now generate the new path of steepest descent as before: 
 
Path of Steepest Ascent for Warpage 
  Predicted 
Holding Pressure Cycle Time Warpage 
(Mpa) (seconds) (%) 
55.0 37.5 6.53789 
60.0 38.7931 4.47599 
65.0 39.8994 2.6193 
70.0 40.7927 0.937993 
75.0 41.4484 -0.604398 
80.0 41.8456 -2.0507 
Figure 28: Calculated Points Along the Path of Steepest Descent 
 
The predicted responses at points along the path of steepest descent suggest a direction in which 
to look for better results. Being fairly cautious, the researchers next decided to do a sequence of 
experiments along the suggested path to verify the predictions. The table below shows the 
outcome of 5 experiments along that path: 
 
Holding Pressure Booster Pressure Cycle Time Shrinkage Warpage 
(Mpa) (Mpa) (seconds) (%) (%) 
60.0 66.3 38.8 3.88 4.59 
65.0 64.8 39.9 3.26 3.61 
70.0 63.1 40.8 2.81 3.10 
75.0 61.2 41.4 2.73 3.39 
80.0 59.1 41.8 2.98 4.23 
Figure 29: Results of Experiments Along the Path of Steepest Ascent 
 
Notice that the first few steps along the path decreased both Shrinkage and Warpage, although 
not as dramatically as the models had predicted. Eventually, both responses began to rise again. 
This is evidence that the first-order models fit by the screening designs failed to capture the 
curvature in the response surfaces. This is not surprising, since the primary task of the screening 
experiment was to select the most important factors from amongst the initial 8. The fact that the 
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screening experiment gave an indication of the direction in which to look for improved 
performance is an added benefit. 
 
 
Step 6: Construct an Optimization Experiment 
Now that the number of experimental factors has been reduced to a manageable number, an 
optimization experiment can be constructed. Based on the results of the experiments along the 
path of steepest descent, it was decided to construct a second experiment covering the following 
region: 
 
 Holding Pressure: 65 – 80 Mpa 
 Booster Pressure: 60 – 65 Mpa 

Cycle Time: 40 – 45 seconds 
 
To construct this experiment, the StatFolio was cleared and Create Design selected from the 
main menu: 
 

 
Figure 30: Initial Dialog Box for Creation of a Response Surface Design 
 
On the next two dialog boxes, the factors and experimental region were defined as listed above. 
On the design selection dialog box, a central composite design was selected: 
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Figure 31: Response Surface Design Selection Dialog Box 
 
This design consists of 16 runs: 
 

1. 8 runs at all combinations of the high and low levels of the 3 factors. When plotted in 3 
dimensions, these points form a cube. 

 
2. 6 runs at star points, located at the end of radial lines extending out through the 6 faces of 

the cube. 
 

3. 2 runs at the center of the design. 
 
On the design options dialog box, all of the default settings were accepted: 
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Figure 32: Response Surface Design Options Dialog Box 
 
The final design is shown below: 
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Figure 33: Design Matrix for Optimization Experiment 
 
Note: the star points generated by STATGRAPHICS were placed at locations to make the design 
perfectly rotatable, which is a property that insures equal predictive power in all directions. Once 
entered into the datasheet, the levels were rounded slightly by hand. 
 

Step 7: Analyze the Optimization Experiment 
 
The 16 runs were then performed and the values of Shrinkage and Warpage were measured. The 
results are contained in the file Howto9A.sfx.  
 
Analysis of Shrinkage 
The standardized Pareto chart for Shrinkage is shown below: 
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Standardized Pareto Chart for Shrinkage
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Figure 34: Standardized Pareto Chart for Shrinkage 
 
None of the terms involving factor C appear to be statistically significant, so Cycle Time was 
dropped from the model. The resulting contour plot is shown below: 
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Figure 35: Contour Plot for Shrinkage 
 
Minimum Shrinkage is achieved at low Booster Pressure, with Holding Pressure around 71 
Mpa. Decreasing Booster Pressure below 58 might reduce Shrinkage even more. 
 
Analysis of Warpage 
The standardized Pareto chart for Warpage shows that only Holding Pressure and Cycle Time 
have a significant effect: 
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Standardized Pareto Chart for Warpage
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Figure 36: Standardized Pareto Chart for Warpage 
 
Dropping Booster Pressure from the model yields the following contour plot: 
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Figure 37: Contour Plot for Warpage 
 
Minimum Warpage is achieved at high Cycle Time, with Holding Pressure around 67 Mpa. 
Increasing Cycle Time above 47 might reduce Warpage even more. 
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Step 8: Perform a Multiple Response Optimization 
 
The optimal settings for each response variable, obtained from the Optimization pane in each 
separate analysis, are summarized below: 
 
Factor Low High Optimum 

Shrinkage = 
1.98714 at 

Optimum 
Warpage = 
2.5815 at 

Holding Pressure 60.0 85.0 71.1878 66.8891 
Booster Pressure 58.0 67.0 58.0 Any 
Cycle Time 38.0 47.0 Any 47.0 
Figure 38: Optimization Results for Individual Responses 
 
Since Booster Pressure and Cycle Time affect only one response, no tradeoff is necessary for 
those factors. However, Holding Pressure affects both responses, and the optimal setting is 
somewhat different for each response. 
 
To find a level of Holding Pressure that achieves a good tradeoff between the two response 
variables, you can use the Multiple Response Optimization procedure. Be sure that you have the 
Analyze Design analysis window open for each of the two responses, since the Multiple 
Response Optimization procedure will search for those windows to obtain the fitted model for 
each response. Then: 

 
• If using the Classic menu, select: DOE – Design Analysis – Multiple Response 

Optimization. 
• If using the Six Sigma menu, select: Improve – Experimental Design Creation – Multiple 

Response Optimization. 
 
On the data input dialog box, specify the names of both response variables: 
 

 
Figure 39: Multiple Response Optimization Data Input Dialog Box 
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The procedure will then find the settings of the experimental factors that maximize a combined 
desirability function, which is a function that expresses the desirability of a solution involving m 
responses through the function of the form 
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where dj is the calculated desirability of the jth response and Ij is an impact coefficient that ranges 
between 1 and 5. Setting the impact coefficient of one response higher than another will give it 
more weight in determining the final solution. 
 
When a response is to be minimized, the desirability of a predicted response equal to jŷ  is 
defined as  
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The user defines the values for low and high, as well as the shape parameter s, which may range 
between 0.1 and 10. The graph below illustrates the shape of the desirability function for 
different values of s: 
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Figure 40:  Desirability Functions with Different Shape Parameters 
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For s = 1, the desirability decreases linearly from 1 at the low value to 0 at the high value. For s 
> 1, it falls quickly at first and then levels off.  For s < 1, it decreases slowly at first and then 
speeds up.  The analyst can set s large if it is very important to be close to the minimum level. 
 
Once the Multiple Response Optimization window opens, select Analysis Options. This displays 
the following dialog box: 
 

 
Figure 41: Multiple Response Optimization Analysis Options Dialog Box 
 
The settings on the dialog box above specify equal Impact values for each response, which 
implies that Shrinkage and Warpage are equally important. It also sets the low and high values 
for each response to 0 and 5, respectively. s is set to 1.5, which causes the desirability  function 
to decrease more rapidly that linearly.  
 
The Optimization pane displays the final solution: 
 

Optimize Desirability 
Optimum value = 0.386613 
 
Factor Low High Optimum 
Holding Pressure 60.0 85.0 68.7636 
Booster Pressure 58.0 67.0 58.0 
Cycle Time 38.0 47.0 47.0 

 
Response Optimum 
Shrinkage 2.0447 
Warpage 2.61746  

Figure 42: Optimal Solution for Multiple Responses 
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As expected, Booster Pressure is set low, while Cycle Time is set high. The optimal setting for 
Holding Pressure is 68.8, which lies between the solutions for each response when optimized 
separately. Note also that while neither response variable is quite as small as when it is optimized 
separately, both responses are quite reasonable compared to the variation observed over the 
experimental region. 
 
 

Conclusion 
 
This guide has demonstrated a typical optimization experiment. The study began by performing a 
screening experiment involving 8 experimental factors and 2 response variables. It was found 
that only 3 of the 8 factors appeared to have a significant effect on the responses. The design was 
then collapsed and the path of steepest descent was calculated for each response. Experiments 
along that path suggested that some improvement was possible by moving outside the current 
experimental region, although the simple linear models appeared to break down when 
extrapolated far from the original experimental region. 
 
An optimization experiment was then performed in the neighborhood of the best solutions found 
while moving along the path of steepest descent. Since curvature had been observed, a full 
second-order central composite design was performed. Models were fit and each response was 
optimized separately. The Multiple Response Optimization procedure was then used to find a 
tradeoff between the best solutions for each response. 
 
To further improve the process, additional experiments could be performed along the new path 
of steepest descent, until an acceptable solution is found or until no further improvement is 
possible.  
 
 
 
 
 
Note: The author welcomes comments about this guide. Please address your responses to 
neil@statgraphics.com. 
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